


IN SILICO IMMUNOLOGY 



IN SILICO IMMUNOLOGY 

edited by 

Darren Flower 
The Jenner Institute, University of Oxford, UK 

and 

Jon Timmis 
University of York, Heslington, UK 

Springer 



Library of Congress Control Number: 2006931791 

ISBN-10: 0-387-39238-6 
ISBN-13: 978-0-387-39238-7 

Printed on acid-free paper. 

© 2007 Springer Science-hBusiness Media, LLC 
All rights reserved. This work may not be translated or copied in whole or in part without the 
written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, 
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly 
analysis. Use in connection with any form of information storage and retrieval, electronic 
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter 
developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights. 

9 8 7 6 5 4 3 2 1 

springer.com 



Darren Flower should like to dedicate this book to the two most 
important people in his life: his wonderful, if long suffering, wife 

Christine and his beautiful daughter Isobel. 

Jon Timmis should like to dedicate this book to his wife, 
Grainne, without whom life would not be complete, and to his as 

yet unborn child: welcome to the mad house. 



Contents 

Preface XI 

List of Cont r ibu tors XV 

Overview 1 

P a r t I In t roducing In Silico Immunology 

1 Inna te and Adapt ive Immuni ty 

Adrian Robins 11 

2 Immunoinformatics and Computa t iona l Vaccinology: A 
Brief In t roduct ion 

Paul D Taylor, Darren R Flower 23 

3 A Beginners Guide to Artificial Immune Systems 

Jon Timmis, Paul Andrews 47 

P a r t I I The N a t u r e of Na tu r a l and Artificial I m m u n e Systems 



VIII Contents 

4 Computa t iona l Models of B cell and T cell Receptors 

Ha Youn Lee, Alan S. Perelson 65 

5 Modell ing Immunological Memory 

Simon Garrett, Martin Rohhins, Joanne Walker, William Wilson, Uwe 
Aickelin 83 

6 Cap tur ing Degeneracy in t h e Immune System 

Paolo Tieri, Gastone C. Castellani, Daniel Remondini, Silvana 
Valensin, Jonathan Loroni, Stefano Salvioli, Claudio Franceschi 109 

7 Al ternat ive Inspira t ion For Artificial Immune Systems: 
Exploit ing Cohen 's Cognitive I m m u n e Model 

Paul Andrews, Jon Timmis 119 

8 Empirical , AI , and Q S A R Approaches to P e p t i d e - M H C 
Binding Predic t ion 

Channa K Hattotuwagama, Pingping Guan, Matthew Davies, Debra 
J Taylor, Valerie Walshe, Shelley L Hemsley, Christopher Toseland, 
Irini A Doytchinova, Persephone Borrow, Darren R Flower 139 

9 M H C diversity in Individuals and Popula t ions 

Jose A. M. Borghans, Can Ke§mir, Rob J. De Boer 177 

10 Identifying Major Histocompatibi l i ty Complex Super types 

Pingping Guan, Irini A. Doytchinova, Darren R. Flower 197 

11 Biomolecular S t ruc tu re Predic t ion Using I m m u n e Inspired 
Algori thms 

Vincenzo Cutello, Giuseppe Nicosia 235 



Contents IX 

Part III How Natural and Artificial Immune Systems Interact 
with the World 

12 Embodiment 

Susan Stepney 265 

13 The Multi-scale Immune Response to Pathogens: M. 
tuberculosis as an Example 

Denise Kirschner 289 

14 Go Dutch: Exploit Interactions and Environments with 
Artificial Immune Systems 

Mark Neal and B. C. Trapnell, Jr 313 

15 Immune Inspired Learning in a Distributed Environment 

Andrew Watkins 331 

16 Mathematical Analysis of Artificial Immune System 
Dynamics and Performance 

Andrew Hone, Hugo van den Berg 351 

17 Conceptualizing the Self-Nonself Discrimination by the 
Vertebrate Immune System 

Melvin Cohn 375 

References 399 

Index 447 



Preface 

Whatever its final readership and impact, we, the Editors, feel this book is im
portant. It addresses the realisation that there is a deep and abiding synergy, 
albeit one only now being properly explored and exploited, between immunol
ogy and computational science. This area of intersection we christen in silico 
immunology. Immunology is an inspiration for computational scientists seek
ing practical and philosophical metaphors for their work; but, at the same 
time, it is itself a biological discipline of such discombobulating complexity 
that only computational help as different as simulation and data warehousing 
can make its modern study tractable. Thus immunology both inspires but also 
requires computational science. This book deals in detail with the three main 
areas of in silico immunology: theoretical immunology, immunoinformatics, 
and artificial immune systems. While all of these are now well-established the 
interactions between the three are only beginning to be developed. It is a truly 
exciting time to be working in in silicio immunology. We are reaching a critical 
mass that will enable great strides to be taken and significant achievements 
to be made. Like David Hume, we may yet come to regret that this book falls 
still born from the press but we hope not. Hopefully it will instead strike a 
cord and tap into a burgeoning Zeitgeist ready to capitalise on the remarkable 
potential that is in silico immunology. 

It is a rare book indeed that is the product of one mind, and this multi-
author tome is certainly not an example of that, and it is never the case that 
the creation, production, and dissemination of a book lies solely in the hands 
of a single individual. So, we have many people to thank for helping us to 
bring this book before the public: 

All the authors, without whose contributions this book would not be possible. 

Springer staff", in particular Frank Holwarth who provided Latex support and 
Marcia Kidston our Editorial Assistant. 
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Referees of our original book proposal, who recommended that we pursue this 
venture, and provided excellent feedback to us. 

Susan Stepney for assistance with the formatting of the bibliography and Jools 
Greensmith for helping with some of the more nasty Latex tables. 

We also have some more personal thanks to give. 

DRF would like offer his thanks to the following. Firstly, Prof Peter Beverley, 
former scientific head of the Edward Jenner Institute for Vaccine Research 
(EJIVR), for introducing me to the world of Immunology and for having the 
moral courage to support bioinformatics in immunology by recruiting me to 
my present post. Secondly, members of his research group at the EJIVR and 
latterly the Jenner Institute, University of Oxford. Of these. One person who 
must be singled out is Dr Irini Doytchinova as her contribution to the group 
has been without equal. The others are Valerie Walshe, Martin Blythe, Chris-
tianna Zygouri, Debra Clayton (nee Taylor), Shelley Hemsley, Christopher P 
Toseland, Kelly Paine, Dr Pingping Guan, Dr Paul Taylor, Dr Helen McSpar-
ron, Dr Matthew N Davies, Dr Channa Hattotuwagama, and Dr Shunzhou 
Wan. DRF should also like to thank other staff members at the EJIVR for 
their help and for stimulating discussions: Dr Persephone Borrow, Dr Shirley 
Ellis, Dr Simon Wong, Dr Helen Bodmer, Dr Sam Hou, Dr Elma Tchillian, 
and Dr Josef Walker. With a few ineffable exceptions, DRF should also like to 
thank all his other colleagues and co-workers at the EJIVR and the Institute 
for Animal Health (IAH), Compton for their close, nurturing, and support
ive collaboration. Finally, DRF would like to thank all his colleagues, friends, 
and colleagues in science, but particularly those working in immunoinformat-
ics, including those too busy to contribute to this book. In particular, he 
would like to thank the following: Dr Tongbin Li, Dr Pedro Reche, Dr G.P.S. 
Raghava, Prof Vladimir Brusic, Prof Shoba Ranganathan, Dr Anne DeGroot, 
and many, many more. 

JT would Hke to offer his thanks to the following: First, Prof Susan Stepney 
and Prof Andy Tyrrell who encouraged me to apply for the position at York 
and provided me excellent support through the process. York is a great place 
to live and work and I am very pleased to have the opportunity to work in 
two excellent departments. Second, people I have worked with over the past 
few years in AIS who have provided me the opportunity to learn about new 
topics and challenge the way I think. In particular, Dr Mark Neal and Dr 
Rogerio de Lemos who never let me get away with anything (and long may 
this continue). I also need to mention Dr Andy Hone, Dr Alex Freitas, Dr 
Emma Hart, Dr Thomas Stibor and Dr Guissepe Nicosia, Dr Miguel Mendao 
and Dr Andy Greensted, all of whom are great collaborators, and working 
with you all is great fun: the way it should be. Third, my research students 
(past and present), without whom the vast majority of work would not get 
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done: Dr. Andrew Watkins, Dr. Tom Knight, Dr. Andy Seeker, Dr Modupe 
Ayara, Pete May, Phil Mohr, Paul Andrews, Ed Clark and Adam Knowles. 
Fourth, I would like to thank DRF for suggesting the idea of undertaking this 
book project, it has been great fun and I have learnt a great deal. Finally, 
I would like to thank Prof Keith Mander from the University of Kent, who 
took the decision to appoint me at Kent some years ago. He was incredibly 
supportive of me in my early years, and I firmly believe if I had not had his 
support I would not be in the position I am now, thank you Keith. 

Compton, July 2006 Darren Flower 
York, July 2006 Jon Timmis 
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Overview of the Book 

Overview of the book 

Immunology is old: at least half a billion years for adaptive immunology and 
far longer for innate immunity. The study of immunology is, however, more of 
a Johnny-come-lately, with a history of scientific study stretching back only a 
few hundred years, although an empirical or phenomenological understanding 
of it probably reaches far into antiquity. Accounts litter the historical record. 
An example, that is often quoted, can found in the works of Thucydides. He 
was the principal historian of the Peloponnesian War, which raged between 
the Spartan AlHance and Greek city-state of Athens. The plague struck in 
the early summer of 430 BC and continued through the following year; af
ter abating greatly, the plague returned again in 427 BC. Its initial effects 
were devastating: over a third of Athens population succumbed. Thucydides, 
who was himself a victim, described the disease, its symptoms and effects, in 
graphic detail, but also noted that: 

it was with those who had recovered from the disease that the sick 
and the dying found most compassion. These knew what it was from 
experience, and had now no fear for themselves; for the same man was 
never attacked twice - never at least fatally. 

Today, science, manifest in the discipline of Immunology, can describe such 
phenomena in rather greater detail and within a presumed precision undreamt 
of by our ancestors. Immunology is intimately connected with disease: in
fectious, most obviously, but also autoimmune disease, inherited and multi
factorial genetic disease, cancer, and allergy. We now believe we understand 
diseases at the most fundamental level and through the vaccine and the ra
tional discovery and targeting of drugs can alleviate the effects of infection 
and even prevent the spread of contagious diseases. Thus immunology is often 
viewed as a science of paramount importance. Immunology is well regarded in 
the wider scientific community. It is a large and well funded discipline. Despite 
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all that, Immunology nonetheless finds itself at a key point in its history. After 
centuries of hypothesis-driven research, it teeters on the brink of reinventing 
itself as a quantitative, genomic, data-driven science. It will need to engage 
with computational science in a way inconceivable less than a generation ago. 
The complexity of datasets will render if it inefiicient, even impossible, to 
analyse them by hand. Simulations will be absolutely vital if any coherence is 
expected from emergent experimental data sets. Yet, immunology has much 
to teach computer science as well. The computer algorithms that it inspires 
are amongst the most insightful and exciting of the modern era. The era of in 
silico immunology is truly upon us. 

In Silico Immunology covers a range of topics that is both diverting and 
extremely diverse. When reading this book you will encounter ideas taken 
from 'wet' immunology, theoretical immunology, mathematics, computational 
modeling, computer science and immunoinformatics. You will discover how 
the role of computing has radically altered the world of immunology, in terms 
of producing models to help further understand the immune system, to auto
mated techniques which assist in the analysis of vast amounts of data collected 
by experiments. You will also learn about how immunology is informing the 
development of novel computational techniques in computer science and en
gineering to help build more effective tools, this field is known as Artificial 
Immune Systems (AIS). 

In order to get through such a diverse range of topics, we have divided the book 
into 3 major sections: Part I sets the scene, covering the basics of most topics in 
the book; Part II goes onto explore the role of modeling the immune system 
(mathematically and computationally), and this is intertwined with topics 
connected with both the real immune system, and artificial immune systems; 
contributions in Part 3 are concerned with the interaction of both natural and 
artificial systems with their environment, and in many different ways discuss 
the often forgotten notion that a system is embodied in an environment, and 
that environment effects how the system operates. 

However, we begin our journey with some context: the immune system. Chap
ter 1 by Robins provides a gentle introduction to the vast topic of immunology. 
Clearly, this is not a complete overview, as whole books have been written 
on the topic, and have often hardly scratch its surface, but what this chapter 
concentrates on is the interplay between the innate and adaptive immune sys
tems. Robins highlights the intricate interaction between these two arms of 
immune systems, one that is only now be properly explored within immuno
logical research. This has implications also for Artificial Immune Systems. 
The chapter by Neal and Trapnel (Chapter 14) discusses this issue at great 
length, and attempts to draw new inspiration for novel computational systems 
inspired by the innate immune system. 
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Chapter 2 provides a detailed introduction to the second area of this book: 
immunoinformatics. This is a disciphne which has emerged in recent years 
within the wider world of bioinformatics. It addresses the problems particular 
to immunology, such as the prediction of immunogenicity, be that identifica
tion of epitopes or the prediction of whole protein immunogens. Chapter 2 
introduces the scope of immuninformatics and highlights both its importance 
and potential while not shying away from its many remaining problems. 

The final chapter in this section, Chapter 3 presents an introduction to the 
area of Artificial Immune Systems (AIS). This area of research is concerned 
with developing computer systems (or engineered systems) that in some ab
stract way mimic the properties of the natural immune system. One such 
example that we have in this book, is that the immune system learns about 
new antigen, in that during an immune response (amongst many complex in
teractions), new antibodies are generated that have in some way generalised 
so that they can recognise antigen that the immune system may not have 
encountered before. This observation has led to the development of machine 
learning algorithms capable of classification of previously unseen data items. 
However, it would seem that there is a great deal to be done in terms of devel
oping new AIS, which somehow better capture the complexity of the immune 
system. 

Now the scene is set, we move into Part II. Our first contribution here is by 
Lee and Perelson (Chapter 4). In this chapter, the authors present a review of 
computational models of B and T Cells receptors. Models range from simple 
binary based models, to more complex shape spaces, and include details of 
various affinity measures that can be used to simulate the binding of receptors. 
Attention is also given to the use of random energy models which are derived 
from the actual physics of protein interactions. The chapter then discusses the 
relevance and impact of using such models in the context of influenza mod
eling. The notion of shape space has influenced greatly the field of AIS, with 
the more basic models being adapted as a standard. However, consideration 
into how the shape space paradigm may have an impact on the area of AIS is 
discussed somewhat in the chapter by Stepney (Chapter 12), and who argues 
that clearly great care has to be taken when defining the actual shape space 
employed in an AIS, and that maybe, practitioners should be making much 
more use of richer shape spaces in their AIS. 

We then move from modelling receptors, to modelling immune memory. Chap
ter 5 by Garrett et al. first discusses various theories in the immunological 
literature regarding how the immune system maintains a record or memory 
of past encounters. It soon becomes clear that there is no single clear message 
from the literature on how the immune system does achieve this. In order to 
begin addressing this, the authors argue that more powerful modelling tools 
are needed to be able to cope with the complexity of addressing such an issue. 
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The Sentinel system is described, which is a new tool capable of performing 
large scale simulations of the immune system. This tool is then used to simu
late a theory of immunological memory, achieving insightful results, showing 
that such modelling tools can be of great use to understanding immunological 
processes. 

Chapter 6 by Tieri et al. continues the theme of modelling, but now attention 
is drawn to the nature of receptors themselves, and the notion that recep
tors are degenerate i.e. some immune receptors bind to many types of ligands 
(rather than the more traditional view that the binding is more a one-to-one 
nature. The main argument of this chapter is that it is the degenerate na
ture of receptors that is a primary contributor the overall robustness of the 
immune system itself. The authors discuss the notion of degeneracy i the con
text of a class of network models where the idea of degeneracy is very natural, 
and how various degrees of specificity and selectivity to emerge from a such 
degenerate system. This chapter is complimented by the following chapter 
by Andrews and Timmis (Chapter 7) who take this idea of degeneracy even 
further in relation to the development of novel immune inspired algorithms. 
Their suggestion is that incorporating the degenerate nature may lead to more 
robust, scalable and better performing immune inspired systems. As with the 
previous chapter, the authors take the argument made in Chapter 3 that AIS 
are potentially suffering from a lack of novel biological input and that much 
could be gained from revisiting alternative theories of immunology. The au
thors focus on the cognitive theory by Cohen, that the immune system is a 
cognitive system capable of recognition, decision making and actions, much 
like other cognitive systems. Amongst many ideas of Cohen, is degeneracy. 
The chapter goes onto to discuss the role that degeneracy may play in the 
future development of AIS. 

Chapters 8, 9 and 10 all address issues that are specific and molecular, rather 
than general and conceptual, in nature. Chapter 8 addresses the issue of pre
dicting immunogenicity: the ability of the unprimed immune system to mount 
a response to some foreign protein or more general antigen. The ability to 
predict immunogencity lies at the heart of computer assisted vaccine design 
(CAVD). CAVD represents a set of techniques of tremendous potential impor
tance in the search for the next set of life saving vaccines. Immunoinformatics 
has tried to deal with the crucial problem of immunogenicity prediction by 
developing a range of techniques that allow for the accurate identification 
of T cell mediated epitopes. Epitopes are small fragments of proteins which 
constitute the smallest quantum of immune recognition. Most T cell epitopes 
are presented by proteins called Major Histocompatibility Complexes (MHC), 
which are the subject of Chapters 9 and 10. 

In chapter 9, Can Kesmir and colleagues use a potent combination of the
oretical immunology and immunoinformatics to address the question of the 
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origin of diversity within the human MHC and Chapter 10 addresses some 
techniques that can be used to master this bewildering variety in the con
text of vaccines. MHC-encoding genes are among the most polymorphic of 
human genes. Since they mediate such an important role in the immune re
sponses, within populations such polymorphism may arise from selection for 
increased protection of hosts against pathogens. However, each individual ex
presses only a limited number of different MHC molecules. Chapter 9 seeks 
to square the circle in our understanding of this apparent paradox. Chapter 
10 is concerned not with explaining this phenomenon but in trying to deal 
with its practical outcome: the vast range - which numbers in the thousands 
- of MHC alleles present in the human population. Guan, Doytchinova, and 
Flower describe attempts to reduce the huge number of alleles down to a more 
manageable handful of so-called supertypes, which each exhibit the same, or 
nearly the same, peptide specificity. If we can target a small set of supertypes 
of convincing provenance we have a chance of formulating vaccines and other 
immunotherapeutics. 

The final chapter in this section by Cutello and Nicosia (Chapter 11) is our first 
implementation and application of an AIS. In this chapter the authors develop 
a clonal selection based algorithm that is capable of performing biomolecular 
structure prediction. The authors take the approach of casting the problem as 
an optimisation problem (hence the use of a clonal selection type algorithm, 
as this is their typical, but not exclusive, use. Casting the problem as such is 
not in itself novel, however, that happens in this chapter is that the problem is 
recast as a multi-objective optimisation problem for the structure prediction 
of medium sized proteins sequences (46 — 70 residues). Different solutions 
(for 3D conformations) may involve a trade-off between different objectives. 
An optimum solution with respect to one objective may not be optimum 
with respect to another objective. As a consequence, one cannot choose a 
solution which is optimal with respect to only one objective and the algorithm 
must search the landscape for the best compromise. The algorithm proposed 
appears to be very effective, creating a nice circle between the extraction of 
biological inspiration and its application to a biological problem. 

The third and final part of our book turns attention to the environment in 
which the immune system operates and takes a closer look at interactions 
between the environment and the immune system, but also importantly the 
interactions within the immune system. The first of our contribution by Step
ney (Chapter 12) takes a unique look at the consequences of considering the 
immune system as an embodied system i.e. operating within a certain envi
ronment. Stepney explores this concept describing the need for complex dy
namics between the embodied system and its environment and the coupling 
between the two. It is argued that when one thinks carefully about the notion 
of embodiment, it has serious implications not only in a biological context, 
but importantly in an artificial context. Stepney proposes a number of design 



6 Overview of the Book 

principles that can be extracted from the immune system, in the context of 
embodiment, for use in the construction of AIS. Following on from this, Kir-
shner in Chapter 13 discusses in detail the immune response in the context of 
Mycobacterium tuberculosis: this is real embodiment in a real immune system. 
The authors have made attempts to explore the complex system of immunity 
by studying the immune response to a specific pathogen. They present stud
ies of the interaction of the immune system with the intracellular pathogen 
Mycobacterium tuberculosis at a number of biological and spatial scales. They 
highlight both the biology that they are addressing and mathematical ap
proaches that have been adopted as a means to understand the integrated, 
multi-scale complex system know as the immune response. 

Continuing the theme of interacting with the environment, but adding a sec
ond perspective of interactions within the system. Chapter 14 by Neal and 
Trapnel, explores the almost untapped area of innate immunity and how that 
interacts with the adaptive immune system, in the context of AIS. Whilst 
the chapter by Timmis and Andrews discusses the further exploration of the 
adaptive immune system for AIS, Neal and Trapnel identify a significant gap 
in the understanding of the role the complex set of interactions that make up 
the innate and adaptive immune system. Amongst many actors, the chapter 
discusses the role of dendritic cells, mast cells, PAMPS and many others, ul
timately drawing a number of implications for people in the AIS community 
for consideration when developing new AIS. 

Chapter 15 by Watkins explores the use of embodiment for the development of 
an AIS. Here Watkins makes use of distributed processing systems to develop 
an immune inspired classifier (a system capable of identifying unseen data 
items into various classes). In this chapter, Watkins details how a network 
of computers can be exploited to make significant gains in computational 
power for an immune inspired system: this is an excellent demonstration of 
making use of your environment and exploiting it within your computational 
system. The AIS in question is called AIRS (Artificial Immune Recognition 
System) and has received a great deal of attention in the AIS Hterature. Here, 
further advances on AIRS are proposed, and the role of distributed learning 
is discussed as possible future direction for making fuller use of the immune 
metaphor. 

Concluding our discussions on AIS is our penultimate chapter (Chapter 16) 
by Hone and van den Burgh. In this chapter the authors bring together both 
theoretical immunology and AIS through the use mathematical techniques 
used in theoretical immunology for the analysis of immune inspired systems. 
The authors outline the role that certain mathematical techniques can play 
in the understanding of AIS (such as non-linear dynamics and ideas from 
optimal control theory), and go onto propose a novel cytokine network model 
that may be further exploited in future AIS. 
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Our final chapter (Chapter 17) is reserved for Melvin Cohn who has had a 
major impact on the theoretical immunological community over the years. In 
this chapter, Cohn revisits the fundamental nature of self and non-self of the 
immune system and provides a detailed argument as to the conceptual nature 
of the immune self. Cohn describes a principled approach to the understanding 
of the very nature of self/non-self discrimination, and supports his arguments 
from 5 different experiments. He concludes that, sadly, the world of theoretical 
immunology has not had a great impact on experimental immunology: this is 
a challenge to the theoretical community to make more of an impact, as there 
is much insight to be offered. 

Of course, this book is finite, and thus Hmited, and there are several areas of 
in silico immunology that we would have loved to include. The fact that we 
were unable to do so is no reflection on these disciplines within a discipline 
or practitioners thereof. Something we would have liked to do was to include 
more about practical applications to real world problems. Such problems, and 
the application of techniques drawn from some area of in silico immunology to 
address such problems, are clearly legion. These range from methods drawn 
from immunoinformatics applied to clinical immunology through to the ship
ment of freighter cargo using AIS algorithms. Another obvious example of an 
omission is the mathematical modelling of epidemiology and infection disease 
progression and the efficacy of vaccination. The links to both theoretical im
munology and to immuninformatics of such epidemiological modelling is both 
clear and profound. 

The three main disciplines we discuss here theoretical immunology, im
munoinformatics, and artificial immune systems can and do act synergis-
tically. However, not all interactions between them are equally strong nor 
of the same nature. Likewise, their interactions with immunology itself are 
not all equally strong nor of the same nature. Immunoinformatics can be of 
direct benefit to immunology by addressing specific problems, such as the 
prediction of epitopes, which are more efficiently dealt with in silico than 
they are in vitro. By exploring concepts using theoretical immunology, valu
able and testable hypothesises can be generated within immunology. AIS uses 
metaphors from immunology, as filtered through theoretical immunology, to 
design new and efficient computer algorithms which can be then be deployed 
in immunoinformatics. The issue now is to exploit the potential latent within 
all these disciplines both for their own sake and for the sake of immunology 
itself. As we know, and will see time and again in the pages that follow, by 
growing together, rather than apart, all of these areas can and will benefit. 

We hope you enjoy reading in silico immunology. There is clearly a great deal 
that can be learnt in many disciplines from each other, and we feel that the 
future of in silico immunology is bright: working at the true intersection of 
many disciplines, aiming to break through in each. Whether you choose to 
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read the book cover to cover, or dive in at various chapters, we hope tha t the 
eclectic mix tha t we have assembled here proves useful to you and provides a 
great deal of food for thought. 

Darren Flower 
Jon Timmis 
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Summary. Innate immune responses recognise generic targets on pathogens us
ing germline encoded receptors, whereas adaptive immune responses recognise spe
cific targets using randomly generated receptors which have an essentially unlimited 
recognition repertoire. Interactions between innate and adaptive forms of immune 
recognition are increasingly being recognised as essential for the effective function
ing of the immune response. Examples given here demonstrate the advantages of 
integrating pre-programmed recognition (rapid response using widely distributed 
receptors) with random repertoire recognition (open repertoire for specific recog
nition of novel targets, with memory). The randomly generated repertoire brings 
problems of self/non-self discrimination, which is solved at multiple levels in the hu
man immune system, including shaping of the naive repertoire, stringent control of 
naive cell activation by innate immune receptor recognition, and control by regula
tory cells in the periphery. The interactions between innate and adaptive immunity 
are many, complex, and bidirectional, with innate mechanisms being instrumental 
in the initiation of adaptive responses, and controlling the type of adaptive response 
induced; innate effector mechanisms are also recruited in the effector phase of adap
tive responses. The challenge is now to abstract the essential components of the 
innate-adaptive interaction in order to utilise this concept in alternative contexts. 

1.1 Introduction 

For many years, innate and adaptive immunity were separate areas of study: 
adaptive immunologists were engaged in understanding the antibodies pro
duced by B cells and the cell-based recognition structures of the T cell. An
tibodies have a variable binding site which allows them to bind specifically 
to target molecules (antigens) with a seemingly unlimited repertoire. T cell 
recognition specificities are also diverse, but the target for recognition is a 
complex between a self molecule (coded for by the major histocompatibil
ity complex, MHC) and short peptide sequences derived from their target 
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antigen. The MHC antigens that present peptides to conventional T cells are 
very variable, meaning that different individuals present different peptide se
quences from the same pathogen, depending on the peptide 'fit' to their MHC 
molecules. Antibodies recognise native antigens on the cell surface or in the 
extracellular compartment, whereas T cells recognise peptide sequences from 
the antigen. This happens in two main ways: antigens synthesised within a 
cell bind to class I MHC, whereas antigens taken up from outside the cell bind 
to class H MHC. Class I MHC/peptide recognition by cytotoxic T cells allows 
monitoring of the intracellular compartment by continuous sampling of pep
tides from proteins being synthesised within the cell which are transported to 
the cell surface complexed with class I MHC molecules. Class H MHC presents 
peptides to helper T cells, which participate in both cytotoxic T cell responses 
and antibody responses. Innate immunologists studied cellular and humoral 
innate mediators, such as macrophages, neutrophils, complement and inter
ferons. In the last ten years, as more has been learned about the receptors 
and molecular mechanisms in the innate immune system [Germain 2004], the 
complex interactions between the innate and adaptive immunity have become 
more apparent, and their importance recognised [Hoebe et al. 2004]. In this 
chapter, these interactions will be exemplified, to illustrate the richness of the 
interplay between innate and adaptive immunity, and in particular to highlight 
the role of innate immunity in controlling the adaptive immune response. 

1.2 I n n a t e a n d A d a p t i v e R e c o g n i t i o n S t r u c t u r e s 

The recognition structures used by the immune system can be divided into 
two categories depending on the way in which they are generated. Firstly, 
those that are encoded for by germ line genes, and whose structure and thus 
specificity are inherited. Secondly, those encoded for by randomly modified 
genes, with specificities which arise by chance in clonally distributed cells of 
the individual. These two categories of receptor can be considered to be a ba
sis for distinguishing innate and adaptive immunity respectively, although as 
we will see, this categorisation is a simplification, with a range of additional 
recognition structures with limited variability forming a grey area between 
classical innate and adaptive receptors. However, this broad distinction be
tween modes of receptor genesis is useful, and also gives a logical basis for 
the familiar characteristics of the innate and adaptive arms of the immune 
response. 

Innate receptors are expressed by large numbers of cells before exposure to 
the potential pathogen, and are thus available for immediate recognition and 
rapid effective first line defence against invaders. The need for a germ line 
code for the specificity of each receptor limits the recognition repertoire, and 
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does not allow for recognition of specificities not previously encountered by 
the species. The direct link between germline sequence and receptor speci
ficity means that these recognition specificities are selected by evolutionary 
pressure. The limited germ line defined repertoire can easily evolve to not 
recognise accessible self antigens, allowing robust self/non-self discrimination 
by the innate immune system. 

The use of randomly coded clonally distributed receptors by the adaptive 
immune system has the major advantage of an open repertoire, capable of 
recognising, in principle, any target molecule (antigen). This allows for recog
nition of threats not previously encountered, and for memory - the ability to 
respond rapidly and effectively on second contact with antigen. Because of 
the diversity of the adaptive repertoire, the frequency of cells with receptors 
specific for a particular new antigen is low, requiring the expansion of these 
antigen specific cells before an effective specific response can be mounted. 
This means that adaptive responses are less rapidly mobilised than innate re
sponses. The randomly encoded repertoire also presents a major challenge for 
self/non-self discrimination. A randomly generated antibody or T cell receptor 
does not 'know' what it is reacting with, because the specificity of recogni
tion is not predetermined by the genes generating the receptor. The adaptive 
immune system therefore has to have a major investment in mechanisms to 
control potentially damaging self reactivity. 

1.3 Controlling Self-reactivity 

Initially, mechanisms that remove potentially damaging self reactive adaptive 
immune cells during their development were described, including positive and 
negative selection of developing T cells in the thymus. This ensures that emerg
ing naive T cells interact with self MHC molecules (positive selection), but 
lack strong reactivity with self-peptide/MHC complexes (negative selection) 
. Issues such as tissue specific self molecules, and molecules only expressed at 
specific developmental stages (such as puberty) were seen as problematic for 
this mechanism, suggesting that the purging of the self-reactive specificities 
from the repertoire must be very incomplete. This and other factors stimu
lated the development of alternative views of self/non-self discrimination (see 
below), and further discussions in the chapter by Cohn and the chapter by 
Andrews and Timmis in this book. However, recent studies of gene expression 
in the thymus have reinforced the view that repertoire selection is a criti
cal component of the control of self-reactivity [Kyewski & Derbinski 2004]. 
Thus tissue specific and developmental stage specific antigens are expressed 
'promiscuously' in the thymus, and mutations or allelic variations which re
sult in altered levels of expression of these antigens are associated with an 
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increased risk of autoimmunity [Kyewski & Derbinski 2004]. It is sobering to 
think that the immune system has such a detailed knowledge of present and 
future self. 

A second level of control of the adaptive response involves a stringent ac
tivation threshold for naive T cells; once this threshold has been achieved, 
a programme of activation occurs, generating memory and effector T cells. 
The requirements for activating T cells at each of these stages is illustrated 
schematically in Figure 1.1. The initial triggering of a naive T cell requires the 
simultaneous triggering of the T cell receptor (often termed signal 1) and re
ceptors responsive to ligands generated by the innate immune response; these 
signals unrelated to antigen specificity are termed signal 2. This requirement 
for signal 2 (also called costimulatory signal) for activation is also found to a 
lesser extent with early and intermediate memory cells, so that for example, 
increasing the costimulatory stimulus recruits more helper cells into cytokine 
production [Waldrop et al 1998]. On the right of Figure 1.1, fully differenti
ated effector cells are exquisitely sensitive to the expression of their antigen, 
being able to respond to 1 or 2 molecules on a target cell [George et al 2005]; 
they do not require costimulation for activation. Another important charac
teristic of late effector cells is that they have limited proliferative potential, 
and are susceptible to apoptosis, or programmed cell death. These character
istics are important for the involution of the specific adaptive response once 
an infection has been cleared. 

resting 
naive 

eady 
memory 

intermediate 
memory 

late 
(effector T) 

Fig. 1.1. Requirements for activation at different stages of T cell maturation. 

The level of costimulation is controlled by signalling via innate immune re
ceptors (see below). A possible representation of this relationship for naive 



1 Innate and Adaptive Immunity 15 

T cell activation is shown in Figure 1.2, making the point that a threshold 
level of signal 1 is required for a response, and that below this threshold im
munological ignorance occurs, and costimulatory signals have no effect. The 
precise shape of the response envelope is not known, but there is an inverse 
relationship between signal 1 and signal 2 requirements above the signal 1 
threshold. 

A third level of control of adaptive immunity is termed peripheral tolerance, 
which may involve rendering T cells refractory to stimulation by their cog
nate antigen (anergy), or the development of immunosuppressive regulatory 
T cells. Anergy may arise when the T cell receptor is activated in the absence 
of costimulation as illustrated in figure 1.2; these conditions may render T 
cells unresponsive to an antigenic stimulus to which they would previously 
have responded. Under some conditions, T cell receptor stimulation without 
costimulation may induce the death of the T cell, and/or induce regulatory T 
cells which actively control T cell responses. This points to a critical aspect 
of the innate/adaptive interaction: in addition to the respond/don't respond 
decision, the innate response controls the type and magnitude of the adap
tive response. This polarisation or differentiation of the adaptive response is 
discussed in more detail below. 

i 

Signal 2 
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ignorance 
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\ response 

tolerance ^^""---v 

Signal 1 

Fig. 1.2. Integration of innate and adaptive signals for stimulation of naive T cell 
responses. Signal 1 is via the T cell receptor (adaptive) and signal 2 is costimulation, 
induced by innate receptors. 
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1.4 Infection and Danger 

The importance of innate immunity in the control of adaptive immune re
sponses was highlighted by Janeway, describing adjuvants required to make 
foreign proteins stimulate a strong immune response as ' . . .immunologists' 
dirty little secret'. He suggested that the immune system has evolved to dis
tinguish infectious non-self from non-infectious self [Janeway 1992]. This is 
achieved through the recognition of 'pathogen associated molecular patterns' 
(PAMPs) by pattern recognition receptors (PRRs) of the innate immune sys
tem. These pattern recognition receptors respond to classes of molecular struc
tures that are found on pathogens, but not normal mammalian cells. Typically 
these pathogen associated molecules are shared by whole classed of organisms, 
for example lipopolysaccharide (Ips) found on gram negative bacteria. 

A different slant on this concept was developed by Matzinger, who also high
lighted the role of the innate immune system in controlling adaptive responses, 
but suggested that innate immune receptors evolved to detect damage to self 
(Danger) rather than recognition of pathogens per se [Matzinger 1994b]. In 
this view, pathogens are seen as utilising receptors for endogenous danger sig
nals, much in the way that morphine evolved in the opium poppy to utilise the 
receptor for endogenous ligands, the endorphins. Examples of danger signals 
might be intracellular components such as DNA and RNA which are released 
when cells undergo accidental (necrotic) cell death, and it is clear that necrotic 
cells induce an inflammatory response conducive to the development of adap
tive immune responses [Gallucci et al. 1999]. 

1.5 Compartments and Anatomy 

The immune system has sophisticated anatomical and cellular mechanisms 
to allow the effective exposure of the naive repertoire of receptors, clonally 
distributed on rare cells, to invading pathogens. The specialised location for 
this interaction is the lymph nodes, which are connected to the tissues of the 
body by a drainage system (the afferent lymphatics). After passing through 
the lymph node, fluid and cells from the tissues rejoins the blood circulation 
via the efferent lymphatics and thoracic duct. NaiVe lymphocytes are only 
able to leave the blood circulation in the lymph node, so they continuously 
revisit lymph nodes by recirculating via the bloodstream. Memory cells can 
extravasate into the tissues, allowing them to seek out and respond to invading 
pathogens. The lymph node is the place where adaptive immune responses are 
initiated: it is a crossroads between the naive repertoire of lymphocytes con
tinuously recirculating between lymph nodes and blood, and material from 
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pathogenic invaders arriving from the tissues via the afferent lymphatics. 
There is also a subset of early memory cells which can recirculate via the 
lymph node. These early memory cells have a high proliferative potential, 
and will be the source of rapid expansion of specific adaptive T cell response 
on reexposure to a pathogen. 

1.6 Dendrit ic cells 

In this anatomical setting, the dendritic cell is the key cellular hnk between 
innate and adaptive responses [Rossi & Young 2005]. This innate immune 
cell has elegantly developed functionality to suit it for this role. In the tis
sues, dendritic cells sample their environment continuously, using a variety of 
mechanisms. These include macropinocytosis, in which surrounding medium 
is ingested, and receptor mediated uptake, where for example the mannose 
receptor recognises abnormal carbohydrate structures. On encountering a 
pathogen, the dendritic cell will respond to the PAMPs it bears in a generic 
way, triggering an activation/maturation response. Pathogen molecules in
gested will be digested into short peptide fragments, which are transported 
to the cell surface in the groove of MHC molecules. As part of the triggering 
response, dendritic cells will leave the tissues and migrate via the afferent 
lymphatics to the lymph node, where they can present pathogen antigens 
to the naive lymphocytes. Recent studies indicate that this process is made 
more efficient by changes to the blood vessels and lymphatics of lymph nodes 
induced by innate immune responses [Soderberg et al 2005]. 

In addition to the antigen presentation function (generating signal 1), another 
crucial aspect of dendritic cell function is integration of innate signals that 
will control the extent and nature of the adaptive response. This is achieved 
by the upregulation of cell surface signalling (costimulatory) molecules and 
production of soluble signalling molecules (cytokines) in response to triggering 
of their PRRs by pathogen derives molecules. It is becoming clearer that the 
type of immune response generated (eg antibody, cytotoxic T cell, regulatory 
T cell) is controlled by innate signals integrated by the dendritic cells and 
translated into the appropriate costimulatory and cytokine response [Pulen-
dran 2005]. A fascinating recent observation suggests that the magnitude of 
the response generated may also be controlled by synergy of signalling via 
different PRRs [Napolitani et al 2005]. 
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1.7 C D 4 T c e l l s 

1.7.1 Helper T cells 

A key means by which the nature of the adaptive response is controlled is by 
the function of the helper T cells induced following stimulation of naive CD4 T 
cells by DC. This was originally described in terms of two subsets: T helper 1 
(Thl) that secrete interferon, and help cellular immunity against intracellular 
invaders; and T helper 2 (Th2) that synthesize interleukin-4 and help antibody 
responses, particularly IgE responses against parasites [Mosmann & Coffman 
1989]. Interestingly, Thl cytokines inhibit Th2 differentiation, and vice versa, 
meaning that once directed by the innate signals from the initiation of the re
sponse, the type of the adaptive response tends to be locked in. The Thl /Th2 
model has proved a valuable paradigm, although it has become apparent that 
additional CD4 functional subsets exist, and their activation determined by 
innate responses. Regulatory T cells were first added to the list [Kapsenberg 
2003], and more recently, a subset producing interleukin 17 (IL-17), that have 
been dubbed Thl7 [McKenzie et al 2006]. These relationships are illustrated 
in Figure 1.3. 

1.7.2 Regulatory T cells 

Regulation of T cell responses by other T cells has recently become an in
tense area of study [Jiang & Chess 2006], after many years in the wilderness. 
Originally named suppressor T cells, the cellular and molecular basis of their 
function became unclear, and the field was largely discredited [Moller 1988]. 
Under the banner of regulatory T cells (Treg), much detailed analysis of the 
mechanisms responsible for the suppressive activity has been undertaken, and 
their potential importance in the control of immunologically mediated dis
eases recognised [Jiang & Chess 2006]. Regulatory T cells have been difficult 
to identify unequivocally, as markers used to identify them, such as CD25 (a 
constituent of the receptor for IL-2), are also expressed by activated T cells. 
However, recently the transcription factor Foxp3 has been shown to be an 
important feature of regulatory T cells [Fontenot & Rudensky 2005]. The de
tailed mechanisms by which regulatory T cells control adaptive responses are 
still under investigation, but key suppressive cytokines XL-10 and transforming 
growth factor beta (TGF^) are involved. 
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Fig. 1.3. Integration of innate immunity and variegation of the adaptive response 
by dendritic cells. Some activating (black arrows) and inhibitory (red lines) activities 
are shown. 

1.7.3 T h i r cells 

T h l 7 cells are the most recent to be added to the interacting subsets of helper 
cells induced by innate responses and controlling adaptive responses; they may 
not be the last, however[Tato et al. 2006]. T h l 7 cells were originally related 
to T h l cells because of their proinflammatory properties, and because of the 
close relationship between IL23 (which is involved in T h l 7 differentiation) and 
IL12 (which induces T h l differentiation). IL12 and IL23 share the same p40 
subunit, which is partnered by p35 in the case of IL12, and p l 9 in the case of 
IL23. An alternative cytokine combination, TGFyS + IL6, has be shown to be 
a powerful inducer of T h l 7 cells. This illustrates the potential of individual 
cytokines to have contrasting effects, depending on other cytokines tha t may 
be present. Thus in this case, TGF/? is a suppressive cytokine, but in the 
presence of IL6, is key to induction of the proinflammatory T h l 7 subset of 
helper cells. IL6 is itself a multifunctional cytokine, being involved in the 
involution of innate (inflammatory) responses, and the activation of adaptive 
responses [Jones 2005]. 

1.8 Natura l Killer (NK) cells 

As illustrated in figure 1.3, cellular interactions are also important in influ
encing the activities of dendritic cells in controlling the adaptive response. 
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Of particular interest are Natural Killer (NK) cells, which have a recognition 
mechanism that is complementary to that of T cells, and also have important 
interactions with dendritic cells [Degli-Eposti & Smyth 2005], influencing the 
outcome of the adaptive immune response. 

NK cells are a subset of lymphoid cells found mainly in the blood and spleen 
which were initially recognised functionally by their ability to kill cancer 
cells in vitro. They are a distinct morphological set of large lymphocytes, 
with granular cytoplasm. The means by which tumour cells are recognised 
and killed by NK cells remained mysterious for many years, until the ele
gant insight of Karre and colleagues, who realised that NK cells recognised 
the absence of self molecules [Karre et al. 1986]. The self molecules involved 
are the MHC molecules that present peptide antigens to T cells, thus cover
ing an escape route for pathogens avoiding recognition by preventing MHC 
molecules bearing their antigens getting to the cell surface. Negative recogni
tion is achieved by inhibitory receptors: an NK cell interacting with a self cell 
that has normal expression of MHC molecules will not kill that cell because 
the self MHC triggers the inhibitory receptors on the NK cell. It is now known 
that there is a range of inhibitory receptors interacting with different specific 
MHC molecules, which requires a 'licensing' mechanism for maturing NK cells 
to acquire full function [Kim et al 2005]. 

There is even a receptor that monitors overall MHC expression by an ingenious 
strategy which uses a peptide sequence in the 'tail' of most MHC molecules. 
This peptide fits into the groove of an invariant MHC molecule, HLA-E, and 
has to be present for HLA-E to get transported to the cell surface. Any inter
ference with the synthesis of MHC molecules reduces the presence of the tail 
peptide, reducing HLA-E expression, and thus reducing the inhibitory signal 
that HLA-E delivers to its own inhibitory receptor [Orange et al 2002]. 

It is also now clear that NK cells have activating as well as inhibitory re
ceptors. The activating receptors recognise molecules upregulated by stressed 
cells, perhaps an example of the detection of 'danger'. The recognition struc
tures involved are again related to classical MHC molecules that present pep
tides to T cells, but as with HLA-E, they have limited variability, and can be 
considered an essential link between innate and adaptive immunity [Rodgers 
& Cook 2002]. As indicated above, using these receptors as an innate detec
tors of damage, activated NK cells are another cellular link between innate 
and adaptive immunity, producing cytokines and having powerful eff"ects on 
dendritic cell function, influencing the outcome of adaptive immune response 
[Degli-Eposti & Smyth 2005]. 
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1.9 Innate immunity and ant ibody responses 

The role of innate immunity in activating appropriate helper T cells is a ma
jor controlling mechanism for antibody responses, but other aspects of innate 
immunity can also have a profound effect. A good example is the complement 
system, which was first identified as an effector mechanism activated by an
tibodies (the classical pathway of activation). The complement system is a 
complex cascade of enzymatically activated molecules, which culminates in 
the assembly of membrane attack complexes, which effectively punch holes in 
the membranes of target cells. Complement can also be activated by purely 
innate mechanisms, by the alternate pathway, and the lectin pathway. Comple
ment activation by these routes can potentiate the adaptive immune system, 
as has been elegantly demonstrated by the construction of synthetic antigen-
C3d complexes [Dempsey et al. 1996]. The dose of antigen required to induce 
an antibody response was reduced by four orders of magnitude when 3 copies 
of C3d were linked to the antigen. 

1.10 Summary 

Elements of the innate and adaptive immune system exemplified here demon
strate the advantages of integrating pre-programmed recognition (rapid re
sponse using widely distributed receptors recognising generic targets) with 
random repertoire recognition (open repertoire for specific recognition of novel 
target, with memory). The randomly generated repertoire brings problems of 
self/non-self discrimination, which is solved at multiple levels in the human 
immune system, including shaping of the naive repertoire, stringent control 
of naive cell activation by innate immune receptor recognition, and control by 
regulatory cells in the periphery. The interactions between innate and adaptive 
immunity are many and complex, with innate mechanisms being instrumental 
in the induction and differentiation of the adaptive response, as well as being 
recruited in the effector phase of adaptive responses. The challenge is now to 
abstract the essential components of the innate-adaptive interaction in order 
to utilise this concept in alternative contexts. 
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Summary. Immunoinformatics has recently emerged as a buoyant and dynamic 
sub-discipline within the wider field of bioinformatics. Immunoinformatics is the 
application of bioinformatic methods to the unique problems of immunology and 
vaccinology. Immunoinformatics, as a principal component of incipient immunomic 
technologies, is beginning to foment important changes within immunology, as this 
key discipline tries to free itself from the empirical straight jacket that has charac
terised its development and attempts to grapple with the post-genomic revolution. 
Immunoinformatics is, importantly, also beginning to establish itself as a pivotal 
tool within vaccine discovery. 

2.1 Introduction 

Have you ever had a bout of the common cold? Do you suffer from Hay Fever or a 
nut allergy or Asthma? Have you ever had a more serious infectious disease? Are you 
a victim of a chronic autoimmune disease or even cancer? Now answer a seemingly 
distinct and unrelated question: have you ever used a computer? If you answered yes 
to either group of questions, have you ever thought of combining the two? The use 
of computers to fight infectious disease and other acute and chronic disease states 
may seem far fetched to many, but computers have long been used in the design 
of small molecule drugs, and now they are beginning to impact on the design and 
discovery of immunotherapeutics and prophylactic vaccines. We see this dramatic 
synergy made manifest through the discipline of immunoinformatics, a profound 
and exciting new computational science able to greatly accelerate the speed and 
eff'ectiveness of vaccine and immunotherapeutic discovery. 

The domain of infectious disease - allergy, in all its forms; autoimmune disease, such 
as rheumatoid arthritis; and even cancer - is the domain of Immunology. Immunology 
is, amongst other many other things, the study of how the body defends itself 
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against infection, and from the standpoint of human disease, a proper appreciation 
of innate and adaptive immunity is crucial, as the immune system has evolved, 
at least in part, to combat infectious disease, the greatest source of preventable 
human mortality and morbidity. Immunology is thus a very broad branch of the 
biosciences which has led, directly or indirectly, to many pivotal advances in modern 
bio-medicine. Moreover, our knowledge of the molecular and cellular mechanisms 
which underlie immunity has also allowed for the development of new clinical and 
non-clinical technologies, which have an equally broad range of applications. While 
much of its focus remains strongly anthrocentric, or, at least, centred on the adaptive 
immune system of vertebrates, its societal importance can not be gainsaid, as it deals 
with the physiological function of the immune system in both health and disease; 
the malfunctioning of immunity in immunological disorders (autoimmune diseases, 
allograph rejection, hypersensitivities, and immune deficiency); and the in vitro, in 
vivo, and in situ, chemical and physiological properties of immunological components 
of the immune system. 

However, immunology, and all its attendant disciplines, now find themselves at a 
turning point, whether or not practitioners realize it. After a hundred years of empir
ical research, immunology is increasingly poised to reinvent itself as a quantitative, 
genome-based science. Like most bioscience disciplines, immunology is increasingly 
facing the challenge of capitalizing on a potentially overwhelming cascade of new 
information delivered by high-throughput, post-genomic technologies. This data is 
both bamboozlingly complex and on a scale which has never been encountered be
fore. It is also clear, at least to some, that such high throughput approaches will 
engender a paradigm-shift from traditional hypothesis-driven research to a new data-
driven, information-focused approach, with new understanding emerging from the 
analysis of complex, intricate, multifaceted datasets. 

In response to pressures such as these, there has been much recent interest in the 
development and deployment of informatics tools, which can analyze the data that 
arises from immunological research of all kinds. In turn, this has lead to the growth of 
two flavours of computational support for immunology. The first is straightforward 
bioinformatics support, technically indistinguishable from support given to other 
areas of biology, and includes genome annotation of both the human genome and 
diverse microbial species. For example, well in excess of 150 bacterial genomes have 
now been sequenced, and hundreds more are nearing completion [Paine & Flower 
2002]. Another area of growth is immunotranscriptomics, or immunologically tar
geted Microarray analysis [Walker et al. 2002]. 

The other kind of support is more focussed: immunoinformatics. This is an exciting 
and dynamic specialism, which has emerged in recent years within the wider world of 
bioinformatics. It addresses the particular problems which arise within immunology, 
including the accurate prediction of immunogenicity, be that manifest as the identi
fication of epitopes or the prediction of whole protein immunogens; this endeavour 
stands as the principal short- to medium-term goal of immunoinformatic investiga
tion. The theoretical or mathematical modeling of the immune systems seeks, as a 
discipline, to address what some are wont to call important scientific questions: how 
might immunity work? What is the nature of host-pathogen interactions? Work of 
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this sort is described in various Chapters elsewhere in this book: Chapter 4 by Lee 
and Perelson, which describes computational modeling of the function of B cell and 
T cell receptors; Chapter 13 by Denise Kirschner, which describes multi-scale mod
eling of the immune system in response to pathogens; and Chapter 17 by Melvin 
Cohn, which describes the self/non-self paradox. Immunoinformatics, on the other 
hand, is concerned with prosaic, nitty-gritty, nuts-and-bolts issues: is this particu
lar amino acid sub-sequence of a protein an epitope? Is this protein within a viral 
genome more antigenic than another? Can we identify common virulence factors in 
the genomes of a distinct phylogenetic grouping of bacteria? It is with questions of 
this sort that immunoinformatics concerns itself; it is a discipline which rolls up its 
sleeves and gets on with the job. 

Like bioinformatics, immunoinformatics is grounded in computer science. Increas
ingly, however, immunoinformatics integrates a whole array of cross-disciplinary 
techniques from physical biochemistry and biophysics; computational, medicinal, 
and analytical chemistry; structural biology and protein homology modeling, as 
well as many other branches of biological, physical, and computational science. 
Traditionally, it has emphasized problem solving and focused on data classifica
tion into discrete sets rather than predicting continuous, quantitative data, leading 
to the use of black-box neural networks for prediction and to databases such as 
SYFPEITHI [Rammensee et al. 1999]. Increasingly, however, approaches are turn
ing towards more quantitative models, familiar from decades of QSAR analysis of 
drug molecules, which predict continuous binding measures. This approach is more 
overtly physico-chemical in nature, with a greater implicit emphasis on the explana
tion of underlying atomistic molecular mechanisms. These different points of view 
are highly complementary. Remaining conflicts between these diflfering perspectives 
are easily reconciled by methods from Drug Design. Such methods meet both ob
jectives: seeking to explain and understand without sacrificing efficiency or loosing 
sight of the pragmatic and utilitarian purpose of the undertaking. 

It is perhaps a cliche, or at least a truism, to say that the immune system is complex, 
complicated, and hierarchical, exhibiting considerable emergent behaviour at every 
level from subcellular to organismal. Yet, for all that, this aphorism retains an essen
tial veracity. If it were not true, then the book you are reading, in silico immunology, 
would not need to be written. The complexity of the immune systems is confounding, 
and, though many might wish to deny it, our ignorance of it remains profound. Yet, 
at the heart of the immune system lie straightforward molecular recognition events: 
the coming together of two or more molecules to form stable complexes of measur
able duration. In terms of atomistic interactions, these events are indistinguishable 
from the binding phenomena experienced by any macromolecule. The binding of an 
epitope to a major histocompatibility complex protein (MHC), or T Cell Receptor 
(TCR) to a peptide-MHC complex is, thus, in terms of underlying physico-chemical 
phenomena, identical in nature to any other molecular interaction in any other area 
of bioscience. It is only at higher levels - when tens, or thousands, or millions of dif
ferent molecules come together - that immune systems exhibit, in time and space, 
complex and confusing emergent behavior. In seeking to understand immunology 
and address its problems, immunoinformatics can exploit the observation that the 
immune system is based on simple, understandable molecular events, and, within 
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the biological context of the subject, it does seek, in the broadest sense, to model 
such phenomena. Much of the rest of this chapter will explore how. 

2.2 Immunogenicity: A Brief Pr imer 

Immunogenicity is that property of a molecular, or supramolecular, moiety that 
allows it to induce a significant response from the immune system. Here a molec
ular moiety may be a protein, lipid, carbohydrate, or some combination thereof. 
A supramolecular moiety may be a virus, bacteria or protozoan parasite. An im-
munogen - a moiety exhibiting immunogenicity - is a substance which can elicit a 
specific immune response, while an antigen - a moiety exhibiting antigenicity - is a 
substance recognized, in a recall response, by the extant machinery of the adaptive 
immune response, such as T cells or antibodies. Thus, antigenicity is the capacity, 
exhibited by an antigen, for recognition by one or several parts of the antibody 
or TCR immune repertoire. Immunogenicity, on the other hand, is the ability of 
an immunogen to induce a specific immune response when it is exposed to initial 
surveillance by the immune system. These two properties are clearly coupled but 
properly understanding how they are inter-related is by no means facile. 

Predicting actual antigenicity and/or immunogenicity of a complex protein remains 
problematic. It depends simultaneously upon the context in which it is presented 
and also the nature of the immune repertoire that recognizes it. Either or both of 
these components may be critical. For example, the immune response in many im-
munogens or antigens is focused to a handful of immunodominant structures, while 
much of the rest of the molecule may be unable to engender a response. Mutat
ing an antigen may eliminate, reduce, or even enhance its inherent immunogenicity, 
or, of course, it might move it to other regions of the molecule. In seeking to as
sess immunogenicity, we must consider properties of the host and the pathogenic 
organism of origin, and not just the intrinsic properties of the antigen itself. The 
composition of the available immune repertoire will affect its response to a given 
epitope and alter its recognition of a particular target. When mounting a response 
in vivo, those elements of an immune repertoire capable of participating, in a given 
response, might have been deleted through their cross-reactivity with host antigens. 
Moreover, fundamental restrictions on the antibody repertoire, imposed by the lim
ited number of V genes that encode the antigen-binding site of the antibody, may 
also limit responses. Overall, it is clear that antigenicity and immunogenicity have 
many interlinked causes. The induction of immune responses requires critical inter
action between parts of the innate immune system, which respond rapidly and in a 
relatively nonspecific manner, and other, more specific components of the adaptive 
immune system, which can recognize individual epitopes. 

Immunogenicity is currently the most important and interesting property for analysis 
and prediction by immunoinformatics. Immunogenicity can manifest itself through 
both arms of the adaptive immune response: humoral (mediated through the bind
ing of whole protein antigens by antibodies) and cellular immunology (mediated by 
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the recognition of proteolytically cleaved peptides by T cells). Humoral Immuno-
genicity, as mediated by soluble or membrane-bound cell surface antibodies, can 
be measured in several ways. Methods such as enzyme-linked immunosorbent assay 
(ELISA) or competitive inhibition assays yield values for the Antibody Titre, the 
concentration at which the ability of antibodies in the blood to bind an antigen has 
reached its half maximal value. One can also measure directly the affinity of anti
body and antigen, using, for example, equilibrium dialysis. Likewise, measurements 
of cellular immunity through T cell responses have become legion. For class I pre
sentation, arguably the most direct approach is to measure T cell killing. Cytotoxic 
T lymphocytes or CTL, can induce lysis in target cells. This can be measured using 
a radioisotope of chromium, which is taken into target cells and released during 
CTL lysis. For class II presentation, the proliferative response of CD4+ T cells, 
which acts indirectly by activating B cells or macrophages, can be measured using 
the incorporation of tritiated thymidine into T cell DNA during cell division. Al
ternatively, Enzyme-Linked ImmunoSpot, or ELISpot, assays measure production 
of cytokines or other molecules by class I and /or class II T-cells when exposed to 
antigen. More recently attention has migrated towards tetramers as tools for detect
ing T cell responses [Doherty et al. 2000]. MHCrpeptide tetramers are formed from 
four biotinylated peptide-MHC complexes (pMHCs) bound to tetrameric avidin or 
streptavidin. These tetramers bind to TCRs with a proportionately higher affinity 
allowing antigen-T cell interactions to be assessed with greatly enhanced specificity. 

Much of immunogenicity is determined by the presence of epitopes, the principal 
chemical moieties recognized by the immune system. Consequently, the accurate pre
diction of B cell and T cell epitopes is the pivotal challenge for immunoinformatics. 
Despite a growing appreciation of the role played by non-peptide epitopes, such as 
carbohydrates and lipids, nonetheless peptidic B cell and T cell epitopes (as medi
ated by the humoral or cellular immune systems respectively) remain the principal 
tools by which the intricacy of immune responses can be surveyed and manipulated, 
since it is the recognition of epitopes by T cells, B cells, and soluble antibodies that 
lies at the heart of the adaptive immune response. Such initial responses lead, in 
turn, to the activation of the cellular and humoral immune systems and, ultimately, 
to the effective destruction of pathogenic organisms. 

While the prediction of B cell epitopes remains primitive and largely unsuccessful 
[Blythe & Flower 2005], a multitude of sophisticated, and successful, methods for 
the prediction of T cell epitopes have been developed [Flower et al 2002]. These be
gan with early motif methods [Doytchinova et al. 2004c], and have grown to exploit 
both qualitative and semi-quantitative approaches, typified by neural network clas
sification methods, and a variety of more quantitative techniques [Doytchinova & 
Flower 2002c]. Most modern methods for T cell epitope prediction rely on predicting 
the affinity of peptides binding to MHCs. The T cell, a speciahzed type of immune 
cell mediating cellular immunity, constantly patrols the body seeking out foreign 
proteins derived from microbial pathogens. T cells express a particular receptor: the 
T cell receptor or TCR, which exhibits a wide range of selectivities and affinities. 
TCRs bind MHCs, which are presented on the surfaces of other cells. These proteins 
in turn bind small peptide fragments (epitopes) originating from both endogenous, 
or self, and exogenous, including pathogen-derived, protein sources. It is, as we have 
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said, the recognition of such complexes that lies at the heart of both the adaptive, 
and memory, cellular immune response. 

2.2.1 T cell and Antibody Repertoire 

Until recently, the immune system was thought to discriminate rigidly between "self" 
and "non-self". This discrimination was believed to form the basis of protection of 
the host against pathogens. Such views are changing as studies indicate that deter
minants of self do not always induce absolute immune tolerance in the host. Under 
certain conditions peptides from self-antigens can be processed and displayed by 
MHC as targets for immune surveillance. This provides a rationale for the investi
gation of, say, self-epitopes as mediators of autoimmunity, or epitopes from cancer 
antigens as targets for immunotherapy or targeting epitopes from proteins which 
induce allergic reactions. 

As we have said, MHCs bind peptides. These are themselves derived through the 
degradation, by protelotytic enzymes, of foreign and self proteins. Foreign epitopes 
originate from benign or pathogenic microbes, such as viruses and bacteria. Self epi
topes originate from host proteins that find their way into the degradation pathway 
as part of the cell's intrinsic quality control procedures. The proteolytic pathway 
by which peptides become available to MHCs is very complex and many, many im
portant details and molecular components remain to be elucidated. Yet, it is the 
complexity and degeneracy of the T cell presentation pathway that allows peptides 
with diverse post-translational modifications, such as phosphorylation or glycosyla-
tion, to form pMHCs, and thus, ultimately, to be recognized by TCRs. Moreover, 
MHCs are very catholic in terms of the molecules they bind and are not restricted 
to peptides. Chemically modified peptides and peptidomimetics are also bound by 
MHCs. It is also well known that many drug-like molecules bind to MHCs [Pichler 
2002]. 

As we shall see below, the overall presentation process is long, complicated, and 
involves many subsidiary steps. There are several alternative processing pathways, 
but the principal ones seem linked to the two major types of MHC: Class I and 
Class H. Class I MHCs are expressed by almost all nucleated cells in the body. 
They are recognized by T cells whose surfaces are rich in CDS co-receptor protein. 
Class H MHCs are only really expressed on so-called professional antigen present
ing cells and are recognized by T cells whose surfaces are rich in CD4 co-receptors. 
MHCs are polymorphic. Generally, most humans have six classic MHCs: 3 Class 
I (HLA-A, B, and C) and 3 class H (HLA-DR, DP, and DQ), these proteins will 
have different sequences, or different HLA alleles, in different individuals. Different 
MHC alleles, both class I and Class H, have different peptide specificities. A simple 
way to look at this phenomenon is to say that MHCs bind peptides which exhibit 
certain particular sequence patterns and not others. Within the human population 
there are an enormous number of different, variant genes coding for MHC proteins, 
each of which exhibits discernibly different peptide-binding sequence selectivities. T 
cell receptors, in their turn, also exhibit different and typically weaker affinities for 
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different peptide-MHC complexes. The combination of MHC and TCR selectivities 
thus determines the power of peptide recognition in the immune system and thus 
the recognition of foreign proteins and pathogens. This will be discussed more thor
oughly in accompanying chapters. Whatever dyed-in-the-wool immunologists may 
say, such interactions form the quintessential nucleus of immune recognition, and 
thus the principal point of intervention by immunotherapeutics. 

2.3 Epitopes and Epitology 

The word epitope is widely used amongst biological scientists. Etymologically speak
ing, its roots are Greek, and, like most words, its meanings are diverse and in a state 
of constant flux. It is most often used to refer to any region of a biomacromolecule 
which is recognized, or bound, by another biomacromolecule. For an immunologist, 
the meaning is more restricted and refers to particular structures recognized by the 
immune system in particular ways. The region on a macromolecule, which under
takes the recognition of an epitope, is called a paratope. In terms of the physical 
chemistry of binding, then we need think only of equal partners in a binding reaction. 
B cell epitopes are regions of a protein recognized by Antibody molecules. T cell 
epitopes are short peptides which are bound by major histocompatibility complexes 
(MHC) and subsequently recognized by T cells. 

A B cell epitope is a region of a protein, or other biomacromolecule, recognized by 
soluble or membrane-bound Antibodies. B-cell epitopes are classified as either linear 
or discontinuous epitopes. Linear epitopes comprise a single continuous stretch of 
amino acids within a protein sequence, while an epitope whose residues are distantly 
separated in the sequence and are brought into physical proximity by protein folding 
is called a discontinuous epitope. Although most epitopes are, in all likelihood, 
discontinuous, experimental epitope detection has focused on linear epitopes. Linear 
epitopes are believed to be able to elicit antibodies that can subsequently cross-react 
with its parent protein. 

A T cell epitope is a short peptide bound, in turn, by MHC and TCR, to form 
a ternary complex. The formation of such a complex is the primary, but not sole, 
molecular recognition event in the activation of T cells. Many other co-receptors 
and accessory molecules, in addition to CD4 and CDS molecules, are also involved 
in T cell recognition. The recognition process is not simple and remains poorly 
understood. However, it has emerged that the process involves the creation of the 
immunological synapse, a highly organised, spatio-temporal arrangement of recep
tors and accessory molecules of many types. The involvement of these accessory 
molecules, although essential, is not properly understood, at least from a quantita
tive perspective. Ultimately, the accurate modelling of all these complex processes 
will be required to gain full and complete insight into the process of epitope presen
tation. 
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We will explore how epitopes arise rather more fully below. The peptides presented 
by class I and class II MHCs differ, principally in terms of their length. Class I 
peptides are primarily derived from intracellular proteins, such as viruses. These 
proteins are targeted to the proteasome, which cuts them into short peptides. Sub
sidiary enzymes also cleave these peptides, producing a range of peptide lengths, 
of which the distribution used to be believed to fall neatly into the range: 8 to 11 
amino acids. More recently, however, this has been shown that much longer pep
tides, currently up to 15 amino acids, can also be bound by MHCs and recognized 
by TCRs [Probst-Kepper et al. 2001]. For Class II, the receptor mediated intake of 
extracellular protein derived from a pathogen is targeted to an endosomal compart
ment, where such proteins are cleaved by cathepsins, a particular class of protease, to 
produce peptides which are typically somewhat longer than Class I. These, again, ex
hibit a considerable distribution of lengths, centred on a range of 15-20 amino acids. 
However, longer and shorter peptides can also be presented, via Class II MHCs, to 
immune surveillance. Peptide cleavage specificity exhibited by Cathepsins has also 
been investigated and some insight has been gained into cleavage motifs [Chapman 
1998]. However, considerably more work is required before truly efficient predictive 
methods can be realized. 

It is now generally accepted that only peptides that bind to MHC at an affinity 
above a certain threshold will act as T cell epitopes and that, to some extent at 
least, peptide affinity for the MHC correlates with T cell response. This particular 
issue is somewhat complicated and obscured by hearsay and dogma: as with many 
questions important to immunoinformatics, the key, systematic studies remain to 
be done. The behaviour of heteroclitic peptides, where synthetic enhancements to 
binding affinity are often reflected in enhanced T cell reactivity, seems compelling 
evidence of the relationship between affinity and immunogenicity. However, and 
whatever people may say, affinity of binding is an important component of recogni
tion and thus of the overall process leading to the generation of an immune response. 
Not the only, or, necessarily, the most important part, but a key part nonetheless. 
Its importance is debated, particularly by people critical of the immunoinformatic 
endeavour. Nevertheless, its utility in this context is clear. Experimental immunolo-
gists and vaccinologists are constantly using nascent immunoinformatic approaches 
to select, filter, or prune lists of candidate peptides in order to identify functional 
epitopes. 

Epitopes, whether B cell or T cell, are, as we have mentioned several times above, 
short continuous or discontinuous sequences or strings of amino acids. These may 
be of different length and exist in different contexts, but they remain sequences. 
As such they can be stored in functional immunological databases, much as whole 
sequences are stored in GenBank or Swiss-Prot. As we shall see in the next section, 
there are many of such resources, most available via the Internet. 
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2.4 Databases 

For some time, the database has been the lingua franca or, more prosaically, the com
mon language of bioinformatics. The creation, and the manipulation of databases, 
which contain biologically relevant information, is the most critical feature of con
temporary bioinformatics. The same is true of immunoinformatics. This is manifest 
through its support for post-genomic bioscience and as a discipline in its own right. 
Functional data, as housed in databases, will rapidly become the principal currency 
in the dynamic information economy of 21** Century immunology. Having said all 
that, there is nothing particularly new about immunological databases, at least in 
the sense that they do no more than apply standard data warehousing techniques in 
an immunological context. Nonetheless, the continuing development of an expand
ing variety of immunoinformatic database systems indicates that the application of 
bioinformatics to immunology is beginning to broaden and mature. 

Example databases, such as IMGT [Robinson et al. 2003] or Kabat [Wu & Kabat 
1970], have made the sequence analysis of important immunological macromolecules 
their focus for many years [Brusic et al. 2002]. Functional, or epitope-orientated, 
databases are somewhat newer, but their provenance is now well established. Gen
erally speaking, such databases record data on T cell epitopes or peptide-MHC 
binding affinity. Arguably, the highest quality database currently available is the 
HIV Molecular Immunology database [Korber et al. 2001b], which focuses on the 
sequence and the sequence variations of a single virus, albeit one of unique med
ical important. However, the scope of the database is, in terms of the kinds of 
data it archives, less restricted than others, containing information on both cellular 
immunology (T cell epitopes and MHC binding motifs) and humoral immunology 
(linear and conformational B cell epitopes). 

An early, and widely used, database is SYFPEITHI [Rammensee et al. 1999], another 
high quality development, which contains an up-to-date and useful compendium of 
T cell epitopes. SYFPEITHI also contains much data on MHC peptide ligands, 
peptides isolated from cell surface MHC proteins ex vivo, but purposely excludes 
binding data on synthetic peptide. MHCPEP [Brusic et al. 1998], a now defunct 
database, pooled both T cell epitope and MHC binding data in a flat file, introducing 
a widely used conceptual simplification, which combines together the bewildering 
variety of binding measures, reclassifying peptides as either Binders or Non-Binders. 
Binders are further sub-divided as High-binders, Medium binders, and Low binders. 
More recently, Brusic and coworkers have developed a much more complex and 
sophisticated database: FIMM [Schonbach et al. 2005]. This system integrates a 
variety of data on MHC-peptide interactions: in addition to T cell epitopes and 
MHC-peptide binding data, it also archives a wide variety of other data, including 
sequence data on MHCs themselves together with data on the disease associations 
of particular MHC alleles . 

More recently, related, yet distinct, databases have begun to emerge, each addressing 
data on different aspects of molecular immunology. Kangueane and coworkers have 
developed a database that focuses solely on X-ray crystal structures of MHC-peptide 
complexes [Govindarajan et al. 2003], while Middleton et al. describe the Allele 



32 Paul D Taylor and Darren R Flower 

Frequency Database which lists population frequencies of particular MHC alleles 
[Middleton et al. 2003]. All these databases are available via the Internet. 

AntiJen [Toseland et al. 2005], formerly known as JenPep[Blythe ei al 2002, Mc-
Sparron et al 2003], is a database developed recently, which brings together a vari
ety of kinetic, thermodynamic, functional, and cellular data within immunobiology. 
While it retains a focus on both T cell and B cell epitopes, AntiJen is the first func
tional database in immunology to contain continuous quantitative binding data on a 
variety of immunological molecular interactions, rather than the kind of subjective 
classifications described above. Data archived includes thermodynamic and kinetic 
measures of peptide binding to TAP and MHC, peptide-MHC complex binding to 
T cell receptors, and general immunological protein-protein interactions, such as 
the interaction of co-receptors, interactions with superantigens, etc. Although the 
nature of the data within AntiJen sets it apart from other immunology databases, 
there is, nonetheless, considerable overlap between other systems and AntiJen. 

Moreover, AntiJen shares characteristics with several other newly-emergent non-
immunological databases: thermodynamic binding databases, such as BindingDB 
[Chen et al. 2002], and a variety of other databases of different sorts, of which BIND 
[Bader & Hogue 2000] and Brenda [Schomburg et al. 2002] are prime examples. 
Such databases, which contain experimental measured binding affinities, are a rel
atively recent development. The focus of these databases is rigorously measured 
thermodynamic properties derived from experimental protocols such as Isothermal 
Titration Calorimetry (ITC), which can return not only free energies of binding, but 
also equivalent enthalpies, entropies, and heat capacities. As these protocols are well 
standardized, databases, such as BindingDB, can easily record precise experimental 
conditions. 

In the domain of immunological experiments, AntiJen records IC50, BL50, t l / 2 mea
surements, etc. For each such measurement, it also archives standard experimental 
details, such as pH, temperature, the concentration range over which the experiment 
was conducted, the sequence and concentration of the reference radiolabeled peptide 
competed against, together with their standard deviations. As it is rare to find a 
paper which records all such data in a reliable way, thus standardization remains a 
significant issue. It is also unclear how much more data remains to be collated. 
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2.5 Immunoinformatic Datamining 

A useful simplification of biological computation is to split methods between the ar
eas of datamining and simulation. In truth, of course, there is a continuous spectrum 
of techniques stretching from one extreme to the other. Within immunology, a key 
example of data mining is the identification of peptide binding motifs, which seeks 
to characterize the peptide specificity of different MHC alleles in terms of dominant 
anchor positions with a strong preference for certain amino acids [Sette et al. 1989]. 
Such motifs are undoubtedly popular amongst immunologists, as they are simple to 
understand and just as simple to implement either visually or computationally. For 
example, human Class I allele HLA-A*0201, probably the best-studied allele, has 
anchor residues at peptide positions P2 and P9. At P2, acceptable amino acids would 
be L and M, and V and L at position P9. Secondary anchors, which are residues 
that are favourable, but not essential, for binding, may also be present. A seem
ingly uncountable number of papers have, over the past 15 years or so, successfully 
extended this to include the specificity patterns of many other alleles, both human 
and animal. However, despite this success, there are many fundamental problems 
with the motif approach. 

The most significant of problem with motifs is that they are deterministic: a peptide 
either is, or is not, a binder. A brief reading of the literature shows that motif matches 
produce many false positives, and probably also produces an equal number of false 
negatives, although such negative results are seldom screened. Thus being motif-
positive, as the jargon can put it, is neither necessary not sufficient for affinity for 
an MHC. Although it is clear that so-called primary anchors do often dominate 
binding, it is well known, that binding motifs, as descriptions of the process, are 
fundamentally flawed. Not hopeless, not useless, but partial and incomplete. In the 
sense that motifs are widely used and widely understood, they are indeed most 
useful, but as accurate predictors of binding they leave much to be desired. Such 
shortcomings have led many to seek other data mining solutions to the peptide-MHC 
affinity problem. 

The development of data driven predictive methods in immunoinformatics is now 
two decades old. Early methods attempted to predict epitopes directly, and, in the 
absence of knowledge of the peptide preferences of MHC restriction, enjoyed hmited 
success [Deavin et al 1996, Flower 2003]. As described in chapter 8, several groups 
have used techniques from artificial intelligence research, such as artificial neural 
networks (ANNs) and hidden Markov models (HMMs), to tackle the problem of 
predicting peptide-MHC affinity [Brusic & Flower 2004]. ANNs and HMMs, are, for 
slightly different applications, particular favourites among bioinformaticians when 
looking for tools to build predictive models. However, the development of ANNs 
is often complicated by their preponderance for problems of interpretation, and 
also for overtraining and over-fitting. Of course, many other methods - indeed, in all 
probability, all methods - suffer similar or equivalent problems. Indeed, over-fitting is 
the curse of all data driven methods. Support vector machines are currently fiavour-
of-the-month. Whether this method, or indeed any other AlS-based approach, will 
ever escape the traps which have caught-out other techniques remains to be seen. A 
number of prediction servers are available over the web. See table 2.1. 
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In the prediction of MHC-binding, the main issues are the quahty, quantity, ability 
to represent available data, the complexity of the selected predictive model rela
tive to the natural complexity of the peptide-MHC interaction, and the training 
and testing of the predictive model. A good quality data set is critical to the cre
ation of an accurate prediction system. Available data contains significant biases, as 
peptides are often pre-selected for experimental testing using binding motifs. Data 
is often intrinsically poor and requires data cleaning. Data quantity also has im
portant implications for the selection of appropriate prediction methods. Guidelines 
have been given based on a recent comparative study of algorithm performance [Bru-
sic k, Flower 2004, Yu et al. 2002] and were suggested in the context of Artificial 
Intelligence techniques, which have well defined data requirements: 

1. If there is no binding data at all, then speculative molecular modeling is the 
only option. Here, supertype analysis, as described later, can be useful. 

2. When the number of available peptides is below 50, binding motifs are the most 
pragmatic solution. 

3. With 50-100 peptides, quantitative matrices or SVMs can be used. 
4. With data sets comprising over 100 peptides, HMMs or ANNs can be used. 
5. With very large data sets, only really available for HLA-A*0201, ANNs can 

provide high specificity predictions, albeit at the price of slightly lowered sensi
tivity. 

Our own QSAR methods have slightly diff'erent data requirements. For more in
formation on these approaches see Chapter 8. The minimum set size is about 20 
peptides, though models only begin to gain statistical significance at 40 peptides 
and above. When sets reach 200 or above, then it becomes possible to introduce 
reliable cross-terms: 1-2 and 1-3 side chain-side chain interactions in our case. 

However, as we have explained above, it is not just quantity, but data diversity, that 
is an issue. As diversity in peptide sequence and binding affinity increases, so does 
the predictivity and generality of the models. Highly degenerate data or data with a 
very narrow affinity range often prove difficult. Predictive models should be tested 
before use, using internal cross-validation and the splitting of data into training and 
test sets. 

2.6 Modelling T cell Mediated Antigen Presentation and 
Recognition 

One of the most challenging problems in modern computational vaccinology is the 
effective modeling of the cellular presentation of antigenic epitopes. Professional 
antigen-presenting cells (APCs), such as dendritic cells or macrophages, endocytose 
and process protein antigens into peptides, which are subsequently presented on 
the cell surface associated with MHC molecules. This presentation can then result 
in the stimulation of cytotoxic or helper T cells. Conceptually, the phenomenon of 
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Fig. 2.1. The 'Simple' Class I Processing Pathway: A schematic showing asimplified 
view of class I antigen presentation. Peptides are generated initially from whole 
proteins via cleavage in the proteasome, followed by transport, into the endoplasmic 
reticulum (ER), by the transporter associated with processing (TAP). ERAAP trims 
peptides prior to  binding by MHC molecules. MHCs are transported to the cell 
surface where they are recognized by T cells. The kind of measurable quantities, 
such as affinities or cleavage patterns, available for each step on the pathway are 
shown. This process approximates to  a funnel with the principal bottleneck being 
binding by the MHC. The kind of model we have worked on (QSAR or MD model) 
is also indicated. 

antigen presentation can be divided into three mechanistic stages. Firstly, antigen 
uptake: the recognition of antigen proteins by cell surface-receptors and the subse- 
quent internalization of soluble, extracellular antigens. Secondly, antigen processing: 
intracellular enzymatic degradation and transport of endocytosed and cytoplasmic 
endogenous and exogenous proteins followed by peptide loading of MHC molecules. 
Thirdly, the exocytosis of MHC complexes, containing self and exogenous and en- 
dogenous antigenic peptides, and CD1, which presents potentially antigenic lipids. 
Put a t  its simplest, fragments of extracellular proteins are presented by class I1 
MHCs and fragments of intracellular proteins are presented by class I MHCs; so- 
called cross-presentation refers to the presentation of extracellular antigens in the 
context of class I MHCs and vice-versa. 

Much of what we adumbrate below will focus on class I antigen presentation; a 
somewhat simplified description of the many subsidiary steps involved in class I 
presentation is shown in Figure 2.1. Significant advances have been made recently 
in the modeling of class I presentation, particularly the prediction of proteasomal 
cleavage patterns and peptide binding to TAP. Together studies on proteasomal 
cleavage and TAP transport represent a good first attempt to produce useful pre- 
dictive tools for the processing aspect of Class I restricted epitope presentation. 



2 Immunoinformatics and Computational Vaccinology 37 

Cytosolic proteins, after labeling with ubiquitin, are transported to the proteasome, 
a multimeric protease responsible for most protein digestion within the cytosol, 
where they are cleaved into short peptides, typically 15 or fewer amino acids in 
length. Several methods have been development for predicting semi-stochastic pro-
teasomal protein cleavage [Brusic k. Flower 2004]. All perform statistical analysis of 
digested fragments from a small set of proteins, principally enolase-1, and augmented 
this sparse data-set with signals apparent in the termini of peptides eluted from cell 
surface MHCs. This developed the work of [Altuvia & Margaht 2000], who showed 
that the termini of peptides eluted from cell surface MHCs exhibit distinct sequence 
motifs at the C, but not the N, terminus, consistent with peptides undergoing N 
terminal trimming by other proteases subsequent to digestion by the proteasome. 
Several of these methods are available via the Internet. The predictive power shown 
by different prediction methods is only beginning to be evaluated objectively. [Sax-
ova et al. 2003] evaluated three publicly available methods for proteasomal cleavage 
prediction, and found that the best method gave an accuracy value of 70% at the 
C-termini. Clearly, considerable progress is still required. 

Peptides generated by the proteasome are subsequently bound by the transmem
brane peptide transporter TAP, which translocates them from the cytoplasm to the 
endoplasmic reticulum (ER). In the ER peptides are bound by MHCs. A number of 
studies have been conducted into the peptide substrate specificities exhibited by the 
TAP transporter [Doytchinova et al. 2004a], leading to the development of several 
predictive models for the determination of peptides that bind to TAP. Most identify 
strong sequence patterns at the C-termini. This feature, also present in proteasome 
cleavage patterns, is consistent with a role for ERAAP in N-terminal trimming of 
peptides within the lumen of the endoplasmic reticulum. 

So far, so good: a reasonably straightforward and uncomplicated linear pathway 
has been modeled with some success. However, there are, in reality, many other 
processing components and, indeed, whole presentation pathways, which greatly 
complicate the simple picture sketched out above. The growing complexity of antigen 
presentation is best exemplified by the class I processing pathway. See Figure 2.2. 
As well as the proteasome, peptides are cleaved by other cytosolic proteases, such 
as Tripeptidyl peptidase II (TPPII), currently the only well characterized protolytic 
enzyme known to be involved in presenting epitopes, although it is most probable 
that many others are involved. Peptides cleaved by the proteasome or TPPII are 
degraded by cytosolic proteases such as LAP and TOP. Peptides transported into the 
ER by TAP then bind to MHCs. This process is catalysed by a variety of chaperones, 
including Tapasin, calnexin, and ERp57. Peptides in the ER pool are trimmed by 
ERAAP and other proteases, such as L-RAP. Other anterograde and retrograde 
routes operate between the cytosol and the ER, by which means protein fragments 
can access diff'erent proteases, including puromycin resistant aminopeptidease. 

At the other end of the process, extracellular proteins undergo antigen capture 
mediated by receptor-mediated endocytosis, entering the class I pathway through 
mechanisms of cross-presentation. The exact nature and number of such receptors 
remains obscure. Accurate modeling of this process is complicated by the observation 
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Fig. 2.2. Complex Antigen Presentation Pathway: A more realistic schematic of 
the class I antigen presentation pathway compared to Figure 2.1. This incorporates 
several proteases as well as different mechanisms of cross-presentation. Peptides are 
created or bound at indicated stage. The route taken by peptides is shown by arrows. 
Two points are of note: first, the synergistic interaction of TPPII and proteasome in 
the proteolytic creation of peptides and second the retrograde access to the cytosol. 

that all cellular compartments or pools, whether conceptual or membrane bound, 
are leaky. 

So far, not so good; at least from the view-point of someone trying to model the 
process. The accurate prediction of antigen processing and presentation depends on 
a proper understanding of the molecular mechanisms underlying the overall path
way. In order to develop a general model of cell surface epitope presentation, each of 
these steps would require its own predictive model for both the thermodynamics of 
peptide specificity and substrate-dependent peptide kinetics. The process requires 
decomposition into a set of peptide cleavage and peptide binding steps, each of 
which would then be open to modeling. This would not, in itself, account for the 
complexities of antigen presentation. Rather, we will need to supplement individ
ual bioinformatic models with well understood mathematical models, such as those 
prototyped on reaction kinetics within multifurcating, multi-enzyme pathways: so 
called "metabolic control theory" [Fell 2005], which can account for substrate flux 
within multi-step, multi-component metabolic pathways, and allow for the ready in
corporation of quantitative aspects of individual bioinformatic models. An effective 
model of this type, however hard to realize in practice, would, in all probability, 
better help us to understand why certain peptides come to dominate presentation: 
the apparently intractable problem of epitope immunodominance. 
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The presentation of peptides by the MHC is often viewed as the most discriminatory 
step of the presentation process. However, peptide recognition by the T cell is also 
vitally important. If we define recognition as the interaction of TCR and pMHC, 
then many complex subsequent steps are involved in the actual activation of T 
cells. Recognition is not an isolated event and the context in which an antigen is 
encountered by a T cell will determine if TCR engagement leads to full activation 
or tolerance. In the presence of costimulation, antigen presentation by an activated 
APC will lead to full activation. However, antigen presentation by a resting APC 
will lead to tolerance. Moreover, molecular recognition of toll-like receptor ligands by 
other receptors also has a key role in activating APCs and promoting the activation 
of T cells. 

2.7 Immunoinformatics and Systems Biology 

At the level of the antigen, and more specifically the protein antigen, immunogenic-
ity is contingent upon properties of the molecule itself, as well as properties of both 
the host and the pathogen, be that microbe or cancer cell. It is, therefore, a collec
tive property of the entire system of interacting cells and organisms. The response 
of the host is mediated by the recognition of T cell and B cell epitopes, as well as 
the recognition of more mechanistically-generic danger signals. The level of expres
sion of the antigen and its subcellular location within the pathogenic organism are 
also potentially key arbiters of immunogenicity. The argument runs thus: a poorly 
expressed, under-represented protein in an inaccessible compartment of a microbial 
cell is unlikely to be an important antigen, however potent its individual epitopes 
may be. How such antigens interact with components of the presentation pathway 
is also important: both viral and bacterial proteins are known to interfere with pro
cesses of antigen presentation: some down regulate MHC production, for example, 
others interfere with peptide transport. 

Immunonomics is a newly coined term which subsumes both the theoretical and 
experimental study of immunology and related disciplines in a post-genomic con
text. We have already described how the complex process of antigen presentation 
and subsequent T Cell recognition is beginning to be modeled. Such attempts, while 
noteworthy, are still floundering due to lack of relevant data. There is still an ob
vious need for experiments which directly support the development of useful and 
accurate in silico models. Immunoinformaticians need quality data to work from; 
existing data is seldom satisfactory. Informaticians can no longer exist solely on 
the crumbs dropped from the experimentalist's table. Instead, there is a clear and 
palpable requirement for experiments specifically addressing the kind of predictions 
that immunoinformaticans need to make. Antigen Presentation is being addressed 
by experiment as well as through the development of theoretical methods. Such ex
periments are, typically, still operating at the phenomenological level: describing the 
phenomenon but not dissecting it. 

Another aspect of immunogenicity prediction, focuses on system properties of indi
vidual gene products from pathogenic micro-organisms. These seek to predict post-
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translational modifications, subcellular localization, and expression levels. Together 
these appear to be important factors in the identification of potential antigens. Cell 
surface proteins, or ones secreted into the extracellular milieu, are more directly 
open to surveillance by the immune system. Poorly expressed genes are unlikely to 
be potent antigens because, again, they will not be seen by the immune system. 
The presence of post-translational modifications can often act as danger signals or 
are potent immunomodulators either as components of T cell epitopes or through 
their binding to other receptors. The identification of pathogen proteins which are 
highly expressed and/or found or outside the pathogen cell and/or contain post-
translational modifications is a highly complementary approach to the detection of 
epitopes, which can be used to select potential antigens with or without knowledge 
of T cell or B cell responses. An alternative to this approach is to attempt the di
rect identification of antigens without reference to any mechanistic detail. Here one 
might endeavor to discriminate between sets of known antigens and sets of known 
non-antigens or random sets of proteins. While conceptually simple and straight
forward, this approach is untested: at present, neither large sets of antigens nor 
appropriate descriptors are forthcoming. 

The effective prediction of protein expression levels in a pathogenic microbe is a 
potentially important indicator of putative immunogenicity. However, there are in
herent difficulties in both the process of prediction itself and in even knowing what 
an appropriate expression level is. Clearly, under certain conditions, such as starva
tion, patterns of expression will change dramatically, being up-regulated or down-
regulated significantly. Generally, we can assume that the successful surveillance of 
a microbial protein by the immune system will be linked, in part at least, to its 
presence in sufficient quantities. There are many ways to predict expression levels 
but the best studied is codon usage [Karlin & Mrazek 2000]. Different organisms dis
play different codon biases: the preference for one codon rather than another when 
coding for amino acids. Moreover, there is also a correlation between the choice of 
which codon is used and the level and rate at which a protein is expressed. The 
ability to predict different expression levels under different conditions is difficult 
and requires at least a partial understanding of the whole hierarchy of immune 
regulation: transcription factors and their binding sites, operons, promotors, mulit-
component regulatory networks, etc. To address this pivotal challenge will require 
the combined ingenuity and imagination of experimentalists, theorists, immunoin-
formaticans, computer scientists, and mathematicians. 

Another important aspect of the prediction of immunogenicity is the accurate iden
tification of Post-Translational Modifications (PTMs). These can take many forms 
and many potentially contribute to the molecular basis of immunogenicity. PTMs 
can include glycosylation and lipidation. Glycosylated proteins can be targets for 
binding by cell surface receptors based on sugar binding leptin domains. Glycosy
lated epitopes can also be bound by TCRs and antibodies. Lipids can act as epitopes 
directly through their presentation by GDI. PTMs can also be transitory, such as 
phosphorylation, or more permanent, such as modified amino acids. Many of these 
can be part of functional epitopes recognized by the immune system. Glycosylation 
of a protein, for example, is dependent on the presence of sequence patterns or motifs 
(Ser/Thr-X-Asn for N-linked glycosylation and Ser/Thr for 0-linked) but this is not 
enough to correctly predict them. If these motifs are present at solvent inaccessible 
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regions of a protein rather on the surface then they will not be glycosylated. More
over, the other residues which surround these patterns will also affect the specificity 
of the glyscosylating enzymes: Pro as the X in the Ser/Thr-X-Asn motif for N-linked 
glycosylation will essentially prevent glycosylation. Glycosylation, in particular, is 
also very dependent on context, and it is thus a system property of an organism, 
and can vary considerably in terms of the nature and extent of the different sugars 
that can become attached to proteins, at least in eukaryotic systems. 

Arguably, the most useful, and thus the best studied, of what we might broadly term 
system approaches to the identification of immunogens, has been the prediction of 
subcellular location. There are two basic types of prediction method: the manual 
construction of rules based on knowledge of what determines subcellular location 
and the application of data-driven machine learning methods, which automatically 
identify factors determining subcellular location by discriminating between proteins 
from different known location. Accuracy differs markedly between different methods 
and different compartments, due to a paucity of data or the inherent complexity 
that determines protein location. Such methods are often classified according to the 
input data required and how the prediction rules are constructed. Input data which 
is used to discriminate between compartments include: the amino acid composition 
of the whole protein; sequence derived features of the protein, such as hydrophobic 
regions; the presence of certain specific motifs; or a combination thereof. Phyloge-
netic profiles can also be used to predict protein location, as the location of close 
protein homologues can be assumed to be similar. 

Signal complexity is a more complicated problem. A very complex signal will require 
considerable data so that one might be confident in the model. A simple signal, on 
the other hand, may prove difficult because many, otherwise unrelated, proteins may 
posses a sorting signal which appears similar, but only by chance. For example, the 
SWISS-PROT sequence database contains about twice as many non-perioxisomal 
proteins with a PTSl sorting signal than real perioxisome-located proteins. 

Another challenge is the difference in locations evinced by different organisms. 
PSORT, a knowledge-based, multi-category program for the prediction of subcellular 
location, and often regarded as the gold standard for such predictions, is composed 
of several different programs. Of special interest in this context is PSORT-B, which 
generates predictions for subcellular location in bacteria. It reports precision values 
of 96.5% and recall values of 74.8%. PSORT-B is a multi-category method which 
makes use of six algorithms: SCL-BLAST, which uses protein homology to identify 
location; PROSITE, which detects motifs; HMMTOP, which predicts membrane 
proteins; outer membrane ^5-barrel proteins are identified using specific sequence 
patterns; SubLocC, is an SVM that uses protein amino acid composition to assign 
a cytoplasmic or non-cytoplasmic location; and a Hidden Markov Model trained to 
identify signal peptide cleavage sites. The results of these 6 methods are combined 
using a Bayesian Network. 

Another well known method of interest here is SignalP, which is based on neural 
networks and predicts N-terminal Spase-I-cleaved secretion signal sequences and 
their cleavage site. The signal predicted is the type-II signal peptide common to 
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both eukaryotic and prokaryotic organisms, for which there is wealth of data, in 
terms of both quality and quantity. A recent enhancement of SignalP is a Hidden 
Markov Model version which is also able to discriminate uncleaved signal anchors 
from cleaved signal peptides. One of the Hmitations of SignalP is over-prediction, 
as it is unable to discriminate between several very similar signal sequences, regu
larly predicting membrane proteins and lipoproteins as type-II signals. Many other 
kinds of signal sequence exist. A number of methods have been developed to predict 
lipoproteins, for example. The prediction of proteins that are translocated via the 
TAT-dependent pathway is also important but has not been addressed in any depth. 

2.8 Immunoinformatics and Vaccinology 

Vaccines are molecular entities which can, in effect, mimic infectious organisms so 
that such microbes can later be recognised and destroyed by the human body or 
other host, without harm to itself, during subsequent infection. Based on sound, 
experimental data, immunoinformaticians are using statistical and artificial intel
ligence methods to identify computationally antigenic proteins and epitopes from 
pathogenic micro-organisms - bacteria, virus, parasites, or fungi - which the immune 
system can then recognize, tagging these invading microbes for eventual destruction. 
However, in order to realise the burgeoning power of these advances still requires 
much effort. 

Vaccines can provide both therapeutic and prophylatic treatments of autoimmune 
diseases, allergy, and cancer, as well as infectious disease. In light of the many per
ceived threats to human health, views about infectious disease, in particular, are 
altering rapidly, leading to a radical reappraisal of the role of vaccines in the fight 
against pathogenic micro-organisms. Immunovaccinology is the name given to a ra
tional form of vaccinology based very firmly upon our increasing understanding of 
the fundamental mechanisms which underpin immunology. It must also exploit the 
potential power of post-genomic technologies. Humanity has sought to address infec
tion through the systematic use of biological and chemical entities: small molecule 
drugs and supramolecular vaccines. It is now generally accepted that mass vaccina
tion, taking account, as it does, of the principal of herd immunity, is amongst the 
most effective prophylactic approaches to the treatment, or rather, pretreatment, of 
infectious disease. 

The discovery of vaccination is generally attributed to Edward Jenner, who noted 
that milkmaids, who had contracted cowpox, a virus related to smallpox, seemed 
immune to the disease. On 14*̂ ^ May 1796, he used the fluid from a cowpox pustule 
to build protective immunity against smallpox in James Phipps, an 8 year old boy. 
Jenner then infected him with smallpox. The boy did not become ill. Later, Vaccina
tion - the word Jenner had invented for his treatment (from the Latin vacca, a cow) 
- was adopted for immunization against any disease. In 1980, the World Health Or
ganisation was able to announce the total eradication of smallpox through worldwide 
vaccination. 
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However, vaccination has, until relatively recently, been a highly empirical science, 
relying on poorly understood, non-mechanistic approaches to the development of 
new vaccines. As a consequence of this, relatively few effective vaccines were de
veloped, and deployed, during most of the two centuries that have elapsed since 
Jenner's work in the closing years of the Eighteenth century. In the post war years, 
when antibiotics were king, the threat posed by serious infectious disease, at least in 
First World countries, seemed to all but vanish, as vaccines and antimicrobial drugs 
combined to almost eliminate it. The present era is characterized by worries over 
a variety of burgeoning threats to human well-being: bio-terror ism, climate change, 
antibiotic resistance, etc. These changes have led, amongst other things, to the re-
emergence of diseases such as TB, and exotic emergent diseases, e.g. SARS or avian 
flu. 

A vaccine is a molecular, or super-molecular, agent which elicits specific, protec
tive immunity against pathogenic microbes and the diseases they cause. Protective 
immunity is an enhanced adaptive immune response to re-infection, as potentiated 
by immune memory, which, ultimately, mitigates the effect of subsequent infection. 
Historically, vaccines have been attenuated whole pathogen vaccines such as Sabin's 
Polio vaccine or BCG for TB. Recently, safety concerns have led to the development 
of other strategies, focusing separately on subunit/antigen and epitope vaccines (see 
Figure 2.3). Hepatitis B vaccine is an example of an antigen - or subunit - vaccine, 
and many epitope-based vaccines have now entered clinical trials. Nevertheless, de
spite much effort, both publicly and commercially funded, efficacious vaccines are 
not yet available for many major pathogens such as Shigella, H. pylori, or Meningo
coccus B. 

WHOLE 
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Fig. 2.3. Types of Vaccine: The three main kinds of vaccine component: whole 
organism attenuated pathogen; subunit whole protein vaccine; polyepitope vaccine. 
These three are the principal kind of core components of modern vaccines. Epitopes 
can, potentially, also be carbohydrate or lipid based or a mixture. Modern vaccines 
are delivered in a variety of ways, such as DNA or as part of a viral vector. Vaccines 
are also often delivered with adjuvants, molecules which can exacerbate an initial 
immune response. 
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Ultimately, the utilitarian value of epitope and immunogenicity prediction will need 
to be demonstrated through their usefulness in experimental vaccine discovery pro
grammes. All of the methods, we have adduced, focus primarily on the discovery of 
T cell epitopes, which can prove useful, amongst other things, as diagnostic markers 
of microbial infection and as the potential basis of epitope vaccines. Many workers 
have, in recent years, used computational methods as part of their strategy for the 
identification of both Class I and Class II restricted T cell epitopes. However, it 
is certainly encouraging that many experimental immunologists are now beginning 
to see the need for informatics techniques. Computer-based data and knowledge 
management is essential if this data deluge is not to overwhelm the post-genomic 
vaccinologist. 

There is a clear need to produce more accurate prediction algorithms, which cover 
more Class I and Class II alleles in more species. Yet, for these improved method
ologies to be ultimately effective, i.e. that they are taken up and used routinely 
by experimental immunologists, these methods must also be tested rigorously for 
a sufficiently large number of peptides that their accuracy can be shown to work 
to statistical significance. To do this requires more than new algorithms and soft
ware, it requires the confidence of experimentalists to exploit the methodology and 
to commit laboratory experimentation. Yet most of these tools remain daunting for 
laboratory-based immunologists. The use of these methods should be routine. It is 
not only a matter of training and education. These methods must, ultimately, be 
made more accessible and robust. 

2.9 Discussion 

From a societal standpoint, immunology is rightly viewed as an important - even a 
paramount - science. Immunologists are sometimes regarded as a discipline apart. 
Immunology has a high standing in the wider scientific community: its journals have 
high impact factors, and it is a large and, generally speaking, a well funded disci
pline. Immunology is intimately connected with disease: infectious, most obviously, 
but also autoimmune disease, inherited and multi-factorial genetic disease, cancer, 
and allergy. Yet, for all its prestige, immunology finds itself at a pivotal point in 
its history. After more than a century of empirical research, it is on the brink of 
reinventing itself as a post-genomic science. How will it cope? One obvious way is 
through embracing computational science. 

Immunoinformatics is an amalgam of many different disciplines. Operationally, it 
has grown from bioinformatics and much of immunoinformatics is ostensibly the 
application of standard bioinformatic techniques, such as Micro Array analysis or 
comparative genomics, to the context of immunology. There are, however, several 
areas which are unique to immunology. Amongst these, the accurate prediction of 
immunogenicity, be that manifest as the identification of epitopes or the prediction 
of whole protein antigenicity. It can be fairly described as both the high frontier 
of immunoinformatic investigation and a grand scientific challenge: it is difficult. 
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yet exciting, and, gis a central tool in the drive to develop improved vaccines and 
diagnostics, is also of true practical value. It requires not only an understanding of 
immunology but also the integration of many other disciplines, both experimental 
(physical biochemistry, cell biology, etc.) and theoretical (computer science, etc.). 

We have discussed several distinct areas of immunoinformatic research, yet, there 
are many others, such as predicting B cell epitopes and adjuvant discovery among 
them. Immunoinformatics is changing quickly, with many groups trying to improve 
databases and algorithms. However, despite the steady increase in studies report
ing the real-world use of prediction algorithms, there is still an on-going need for 
truly convincing validations of the underlying approach. Why should this be? As 
we have seen, predicting T-cell epitopes remains a daunting challenge. We still need 
to understand the underlying cell biology and model accurately the complexities 
of the class I and class II antigen presentation pathway. We also still need to un
derstand and accurately model the underlying physical chemistry, in terms of both 
thermodynamics and kinetics, of peptide binding to MHCs and of TCRs binding to 
pMHCs. 

We have come to a turning point, where a number of technologies have obtained 
the necessary level of maturity: post-genomic strategies on the one hand and pre
dictive computational methods on the other. Progress will occur in two ways. One 
will involve closer connections between immunoinformaticians and experimentalists 
seeking to discover new vaccines. In such a situation, work would progress through 
a cyclical process of using and refining models and experiments, at each stage mov
ing closer towards a common goal of effective, cost-efficient vaccine development. 
The other way is the devolved model, where methods are made accessible and used 
remotely via the web and the GRID. 

However, when deprived of direct collaboration, there is still a clear and obvious 
need for experimental work to be conducted in support of the development of accu
rate in silico methods. Recent work from our laboratory shows the way. Peptides, as 
reported in literature binding experiments and epitope identification exercises, have 
heavily biased sequence compositions, resulting from a process of pre-selection which 
leads to spiraling self-reinforcement. Since only part of a given selection will bind, 
this rapidly converges to a very limited, and thus incomplete, model of binding dom
inated by the selection criteria used. These problems would be resolved by a properly 
designed training set. We have addressed this experimentally, beginning by correlat
ing 90 literature peptide IC50S with cell surface BL50 measurements [Doytchinova et 
al. 2004c]. Using models derived from these values, we predicted super-binders with 
pico-molar affinities much greater than reported values. Using analogues of super 
binders with modified anchor positions, we then evaluated the relative dominance of 
anchor positions in a fully systematic manner. Our ability to combine in vitro and in 
silico analysis allows us to improve both the scope and power of our predictions in a 
way that would be impossible using only data from the literature. To ensure we pro
duce useful, quality in silico models, rather than worthless and unusable methods, 
we need to value the predictions generated by immunoinformatics for themselves 
and conduct experiments appropriately. 
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The innate and inherent complexity of the immune system is confounding at all 
levels. Nevertheless, the work of many skilled immunoinformaticains has attempted 
and nonetheless clearly succeeded in producing useful, if doubtless imperfect, models 
with true utilitarian value. Progress is, and will continue, being made. We should feel 
confident that the great synergy arising within this discipline will be of true benefit 
to Immunology, leading to clear improvements in vaccine candidates, diagnostics, 
and laboratory reagents. Methods able to predict immunogenicity accurately will 
become landmark tools for the immunologist and vaccinologist working in the world 
of tomorrow. 
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Summary. Artificial Immune Systems (AIS) have recently emerged as a computa
tional intelligence approach that show great promise. Inspired by the complexity of 
the immune system, computer scientists and engineers have created systems that in 
some way mimic or capture certain computationally appealing properties of the im
mune system, with the aim of building more robust and adaptable solutions. In this 
chapter, we will explore the basics of AIS, charting their brief history, and outlining 
what type of immunology has served as inspiration. We will see that different im
mune processes and ideas have been captured within simple artificial systems, each 
with their own dynamics and application niches. As a final note, we then outline 
considerations that need to be borne in mind when building your own AIS. 

3.1 Introduction 

As we have seen in chapter 1 (and you will see in chapter 14), the immune system is a 
very complex system that undertakes a myriad of tasks. The abilities of the immune 
system have helped to inspire computer scientists to build systems that mimic, in 
some way, various properties of the immune system. We have already read in chapter 
2, how people are using computers to help solve problems in immunology, but now 
we are concerned with the opposite: using immunology to help solve problems in 
computing. 

Over the years, biology has provided a rich source of inspiration for many different 
scientists in many different domains, ranging from the design of aircraft wings to 
bulletproof vests. In computing, there has been an extensive amount of work un
dertaken on the use of biological metaphors, for example neural networks [Haykin 
1999], swarm systems [Kennedy & Eberhart 2001], genetic algorithms [Holland 1975] 
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and genetic programming [Banzhaf et al. 1998]. Recently, there has been increasing 
interest in using the natural immune system as a metaphor for computation in a 
variety of domains [de Castro & Timmis 2002a]. This field of research, Artificial 
Immune Systems (AIS), has seen the application of immune inspired algorithms to 
problems such as robotic control [Krohling et al. 2002], network intrusion detec
tion [Forrest et al 1997, Kim 2002], fault tolerance [Canham h Tyrrell 2002, Ayara 
2005], bioinformatics [Cutello et al. 2004, Nicosia 2004] and machine learning [Kim 
&: Bentley 2002a, Knight & Timmis 2003, Watkins et al. 2004], to name a few. To 
many, trying to mimic how the immune system operates in a computer may seem 
an unusual thing to do, why then would people in computing wish to do this? The 
answer is that, from a computational point of view, the immune system has many 
desirable properties that they would like their computer systems to possess. These 
properties are such things as robustness, adaptability, diversity, scalability, multiple 
interactions on a variety of timescales and so on. There is a real challenge in the 
world of computer science (and engineering) to build systems that can cope with 
increasingly complex problems, and are thus more scalable and robust (i.e. they 
break less!). Indeed, there is the notion of a Grand Challenge in computer science 
to try and do this very thing [Stepney et al. 2005a]. 

When working in the world of biologically inspired computing, a word of caution 
should be given. It is essential that metaphors are adopted carefully. Just because 
the immune system has the desirable property , it does not mean that it is necessarily 
suitable to solve your problem with, therefore, careful thought has to be given to 
the applicability of any technique [Freitas & Timmis 2003]. We will explore this 
later in the chapter. First, we will discuss the area of AIS, providing a history of its 
development, a summary of what AIS are, and a simple outline of the immunology 
that has been used to date to develop the basic principles underlying AIS. Chapter 
7 later in the book, explores a different approach to the inspiration that may be 
explored in AIS, so no discussion on that matter will be given here. This is meant 
as an introductory chapter, so many technical details have been omitted, as has an 
extensive overview of current state of the art. However, the reader is encouraged to 
follow given references if interested in these technical details. 

3.2 A Brief History of Artificial Immune Systems 

3.2.1 The Humble Beginnings 

The origins of AIS has its roots in the early theoretical immunology work of Farmer, 
Perelson and Varela [Farmer et al. 1986, Perelson 1989, Varela et al. 1988]. These 
works investigated a number of theoretical immune network models proposed to de
scribe the maintenance of immune memory (as opposed to the more widely held view 
presented in Chapter 1). Whilst controversial from an immunological perspective, 
these models began to give rise to an interest from the computing community. The 
most influential people at crossing the divide between computing and immunology 
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in the early days were Hugues Bersini and Stephanie Forrest. In the case of Bersini, 
after attending a talk by Francisco Varela in 1985, he made the decision there and 
then to begin working with Varela^. In the case of Forrest, she happened to be 
car sharing on the way to work with Alan Perelson, thus their working relation
ship began there. It is fair to say that some of the early work by Bersini [Bersini 
1991, Bersini 1992] was very well rooted in immunology, and this is also true of the 
early work by Forrest [Forrest et al. 1994, Hightower et al. 1995]. It was these works 
that formed the basis of a soUd foundation for the area of AIS . In the case of Bersini, 
he concentrated on the immune network theory, examining how the immune system 
maintained its memory and how one might build models and algorithms mimicing 
that property. With regards to Forrest, her work was focussed on computer security 
(in particular network intrusion detection) [Forrest et al. 1997, Hofmeyr k. Forrest 
2000] and formed the basis of a great deal of further research by the community on 
the application of immune inspired techniques to computer security. 

3.2.2 Starting to Gain Pace 

At about the same time as Forrest was undertaking her work, researchers in the 
UK started to investigate the nature of learning in the immune system and how 
that might by used to create machine learning algorithms [Cooke & Hunt 1995]. 
The term machine learning is used to cover a wide range of topics [Mitchell 1997], 
but essentially, machine learning techniques are computational methods applied to 
data in order to learn or discover something new about that data, or alternatively, 
to predict answers based on previous knowledge. The work of [Cooke & Hunt 1995] 
came about from the collaboration of Denise Cook, a biologist working at the Uni
versity of Wales, Aberystwyth, with her husband John Hunt, a computer scientist 
working at the same institution. They had the idea that it might be possible to 
exploit mechanisms of the immune system (in particular the immune network) in 
learning systems, so they set about doing a proof of concept [Cooke & Hunt 1995]. 
Initial results were very encouraging, and they built on their success by applying 
the immune ideas to the classification of DNA sequences as either promoter or non-
promoter classes, [Hunt & Cooke 1996] and the detection of potentially fraudulent 
mortgage applications [Hunt et al. 1998]. 

The work of Hunt and Cook spawned more work in the area of immune network 
based machine learning over the next few years, notably in [Timmis 2000] where the 
Hunt and Cook system was totally rewritten, simplified and applied to unsupervised 
learning (very similar to cluster analysis). Concurrently, similar work was carried 
out by [de Castro h Von Zuben 2002, de Castro k. Von Zuben 2001], who developed 
algorithms for use in function optimisation and data clustering (the details of these 
are described in more details later in the chapter). The work of Timmis on machine 
learning spawned yet more work in the unsupervised learning domain, in trying 
to perform dynamic clustering (where the patterns in the input data move over 
time). This was met with some success in works such as [Wierzchon & Kuzelewska 
2002, Neal 2002]. At the same time, using ideas other than the immune network 

^ Personal communication with Hugues Bersini 
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theory, work by [Hart & Ross 2002] used immune inspired associative memory ideas 
to track moving targets in databases. 

In the supervised learning domain, very little happened until work by [Watkins 2001] 
(later augmented in [Watkins et al. 2004]) developed an immune based classifier 
known as AIRS. The system developed by Watkins was then adapted into a parallel 
and distributed learning system in [Watkins 2005], and has shown itself to be one of 
the real success stories of immune inspired learning [Goodman et al. 2003, Goodman 
et al. 2002, Watkins et al. 2003]. More information on AIRS, can be found in Chapter 
15 of this book. 

In addition to the work on machine learning, there has been plenty of other activity 
in AIS over the years. To outline all the applications of AIS and developments over 
the past 10 years would take a long time, and there are some good review papers in 
the literature, thus the reader is directed those [Dasgupta 1999, Timmis Sz Knight 
2001, de Castro & Timmis 2002a, Garrett 2005]. In addition to these works, [Hart 
& Timmis 2005] investigated the application areas AIS have been applied to, and 
considered the contribution AIS have made to these areas. Their survey of AIS is 
not exhaustive, but attempts to produce a picture of the general areas to which 
they have been applied. Of the 97 papers reviewed, 12 categories were identified to 
reflect the natural groupings of the papers. These were, in the order of most papers 
first: clustering/classification, anomaly detection (e.g. detecting faults in engineering 
systems), computer security, numerical function optimisation, combinatoric optimi
sation (e.g. scheduling), learning, bio-informatics, image processing, robotics (e.g. 
control and navigation), adaptive control systems, virus detection and web mining. 
Hart and Timmis go on to note that these categories can be summarised into three 
general application areas of learning, anomaly detection and optimisation. 

Due to a growing amount of work conducted on AIS, the International Conference on 
Artificial Immune Systems (ICARIS) conference series was started in 2002'* and has 
operated in subsequent years [Timmis &; Bentley 2002, Timmis et al. 2003, Nicosia 
et al. 2004, Jacob et al. 2005]. This is the best source of reference material to read in 
order to grasp the variety of application areas of AIS, and also the developments in 
algorithms and the more theoretical side of AIS. It would be impossible, and indeed 
this is not the place, to review all of these advances, so the reader is encouraged to 
pursue those references if they desire. 

3.2.3 What Motivated Them? 

The AIS work we have highlighted above was motivated by a variety of factors. 
However, if one reads the early AIS literature, there are clear reasons why people 
were attracted to the immune system in the first place: 

• Self-organisation. The immune system does not appear to have a central con
troller telling immune agents (cells and molecules) what to do under different 

^ http:/www.artificial-immune-systems.org 
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circumstances. The observed behavior of the system is a result of many local 
interactions, giving rise to a complex, self organizing system. Computationally, 
algorithms that can self organize can be attractive in many situations, such as 
where outside control is not possible or desirable. 

• Learning. B cells and their associated antibodies are, in effect, a record of the 
type of antigens the immune system has been exposed to. The primary and 
secondary immune responses of the adaptive immune system, in response to 
continual exposure to antigens, produce new cells and antibodies to combat the 
infection. This has lead to the development of systems that can learn from re
peated exposure, based loosely on the primary and secondary immune responses. 

• Adaptation and diversity. Some B cell clones undergo somatic hypermutation. 
This is an attempt by the immune system to develop a set of B cells and anti
bodies that cannot only remove the specific antigen, but also similar antigens. 
By using the idea of mutation a more diverse representation of the data being 
learnt is gained than a simple mapping of the data could achieve. 

• Classification. The immune system is able to classify antigens into those that 
are self and non-self via the use of antigen receptors. Computationally, these 
receptors can act as detectors monitoring a system to determine when something 
anomolous (i.e. non-self) has occurred. 

This very limited set of ideas, motivated the AIS practitioner to investigate the 
computational properties of the immune system, and to be honest, use and abuse 
the immune system as inspiration. We will now provide an overview of how the AIS 
practitioner has viewed the immune system in the past, and outline their attempts 
at building simple AIS. These AIS typically attempt to capture a tiny part of what 
the immune system has to offer - as you will see, it is very limited, but can be 
surprisingly successfully. 

3.3 What is an Artificial Immune System? 

AIS have been defined by [de Castro & Timmis 2002a] as: 

"adaptive systems, inspired by theoretical immunology and observed im
mune functions, principle and models, which are applied to problem solv
ing" 

In an attempt to create a common basis for AIS, work in [de Castro Sz Timmis 2002a] 
proposed the idea of a framework for engineering AIS. They argued the case for such 
a framework as the existance of similar frameworks in other biologically inspired 
approaches, such as artificial neural networks (ANN) and evolutionary algorithms 
(EAs), has helped considerably with the understanding and construction of such 
systems. For example, de Castro and Timmis [de Castro & Timmis 2002a] consider 
a set of artificial neurons, which can be arranged together to form an artificial neural 
network. In order to acquire knowledge, these neural networks undergo an adaptive 
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process, known as learning or training, which alters (some of) the parameters within 
the network. Therefore, they argued that in a simplified form, a framework to design 
an ANN is composed of: a set of artificial neurons, a pattern of interconnection for 
these neurons, and a learning algorithm. Similarly, they argued that in evolutionary 
algorithms, there is a set of artificial chromosomes representing a population of 
individuals that iteratively suffer a process of reproduction, genetic variation, and 
selection. As a result of this process, a population of evolved artificial individuals 
arises. A framework, in this case, would correspond to the genetic representation 
of the individuals of the population, plus the procedures for reproduction, genetic 
variation, and selection. Therefore, they proposed that a framework to design a 
biologically inspired algorithm requires, at least, the following basic elements: 

• A representation for the components of the system 
• A set of mechanisms to evaluate the interaction of individuals with the environ

ment and each other. The environment is usually simulated by a set of input 
stimuli, one or more fitness function(s), or other means 

• Procedures of adaptation that govern the dynamics of the system, i.e., how its 
behavior varies over time 
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Fig. 3 .1 . AIS Layered Framework adapted from [de Castro & Timmis 2002a] 

This framework can be thought of as a layered approach such as the specific frame
work for engineering AIS of [de Castro & Timmis 2002a] shown in figure 3.1. This 
framework follows the three basic elements for designing a biologically inspired al
gorithm just described, where the set of mechanisms for evaluation are the affinity 
measures and the procedures of adaptation are the immune algorithms. In order 
to build a system such as an AIS, one typically requires an application domain or 
target function. From this basis, the way in which the components of the system 
will be represented is considered. For example, the representation of network traf
fic may well be diff'erent than the representation of a real time embedded system. 
In AIS, the way in which something is represented is known as shape space. There 
are many kinds of shape space, such as Hamming, real valued and so on, each of 
which carries it own bias and should be selected with care [Freitas & Timmis 2003]. 
Once the representation has been chosen, one or more affinity measures are used 
to quantify the interactions of the elements of the system. There are many possible 
aflftnity measures (which are partially dependent upon the representation adopted). 



3 Artificial Immune Systems 53 

such as Hamming and Euclidean distance metrics. Again, each of these has its own 
bias, and the affinity function must be selected with great care, as it can affect the 
overall performance (and ultimately the result) of the system [Preitas k, Timmis 
2003]. This was also recently shown experimentally in the case of immune networks, 
where the affinity function affected the overall outcome of the shape of the network 
[Hart k. Ross 2004, Hart 2005] The final layer involves the use of algorithms, which 
govern the behavior (dynamics) of the system. Such algorithms include those based 
on the following immune processes: negative and positive selection, clonal selection, 
bone marrow, and immune network algorithms. 

3.4 Current Artificial Immune Systems Biology and 
Basic Algorithms 

The main developments within AIS, have focussed on three main immunological 
theories: clonal selection, immune networks and negative selection. Researchers in 
AIS have concentrated, for the most part, on the learning and memory mechanisms 
of the immune system inherent in clonal selection and immune networks, and the 
negative selection principle for the generation of detectors that are capable of clas
sifying changes in self. In this section, we review the immunology that has been 
capitalised on by the AIS community. We outline the three main immunological 
theories noted above that have acted as a source of inspiration. At each stage, we 
review a simple AIS approach that has extracted some feature from that theory. It is 
worth noting that, although not covered here, a large effort is currently being made 
in the AIS community into exploring other immune ideas and mechanisms such as 
danger theory and innate immunity. For more details see section 3.6 and Chapter 
14 and Chapter 7 in this book. 

3.4.1 Immunity 

The vertebrate immune system (the one which has been used to inspire the vast 
majority of AIS to date) is composed of diverse sets of cells and molecules. These 
work in collaboration with other systems, such as the neural and endocrine, to 
maintain a steady state of operation within the host: this is termed homeostasis. The 
role of the immune system is typically viewed as one of protection from infectious 
agents such as viruses, bacteria, fungi and other parasites. On the surface of these 
agents are antigens that allow the identification of the invading agents (pathogens) 
by the immune cells and molecules, which in turn provoke an immune response. 
There are two basic types of immunity, innate and adaptive. Innate immunity is 
not directed towards specific pathogens, but against any pathogen that enter the 
body. The innate immune system plays a vital role in the initiation and regulation 
of immune responses, including adaptive immune responses. Specialized cells of the 
innate immune system evolved so as to recognize and bind to common molecular 
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patterns found only in microorganisms. However, the innate immune system is by 
no means a complete solution to protecting the body. 

Adaptive, or acquired immunity, is directed against specific invaders, with adaptive 
immune cells being modified by exposure to such invaders. The adaptive immune 
system mainly consists of lymphocytes, which are white blood cells, more specif
ically B and T cells. These cells aid in the process of recognizing and destroying 
specific substances. Any substance that is capable of generating such a response 
from the lymphocytes is called an antigen or immunogen. Antigens are not the in
vading microorganisms themselves; they are substances such as toxins or enzymes 
in the microorganisms that the immune system considers foreign. Adaptive immune 
responses are normally directed against the antigen that provoked them and are said 
to be antigen-specific. 

3.4.2 Clonal Selection 

The clonal selection theory (CST) [Burnet 1959] is the theory used to explain the 
basic response of the adaptive immune system to an antigenic stimulus. It estab
lishes the idea that only those cells capable of recognizing an antigenic stimulus will 
proliferate, thus being selected against those that do not. Clonal selection operates 
on both T cells and B cells. In the case of B cells, when their antigen receptors 
(antibodies) bind with an antigen, the B cell becomes activated and begins to pro
liferate producing new B cell clones that are an exact copy of the parent B cell. 
The clones then undergo somatic hypermutation and produce antibodies that are 
specific to the invading antigen [Berek & Ziegner 1993]. After proliferation, B cells 
differentiate into plasma cells or long-lived B memory cells. Plasma cells produce 
large amounts of antibodies which will attach themselves to the antigen and act as a 
type of tag for other immune cells to pick up on and remove from the system. This 
whole process is known as affinity maturation. 

Memory cells help the immune system to be protective over periods of time. In the 
normal course of the evolution of the immune system, an organism would be expected 
to encounter a given antigen repeatedly during its lifetime. The initial exposure to an 
antigen that stimulates an adaptive immune response is handled by a small number 
of B cells, each producing antibodies of diff'erent affinity. Storing some high affinity 
antibody producing cells (memory cells) from the first infection, so as to form a 
large initial specific B cell sub-population for subsequent encounters, considerably 
enhances the eff"ectiveness of the immune response to secondary encounters. Rather 
than starting from a tabula rosa, such a strategy ensures that both the speed and 
accuracy of the immune response becomes successively stronger after each infection. 

Autoimmunity is the term used to describe the existence of antigen receptors that 
recognise the body's own molecules, or self-antigens. According to the CST, immune 
specificity is a property of immune receptors. When a non-self antigen is detected, a 
suitable immune response is elicited and the antigen is destroyed. Thus, the recog
nition of self-antigen is forbidden, and self-reacting receptors must be deleted. 
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Artificial Clonal Selection 

Work in [de Castro & Von Zuben 2000, de Castro & Von Zuben 2002] proposes 
an optimisation algorithm, known as CLONALG, inspired by the clonal selection 
process, as outlined in the previous section. Given a function F , a population of 
candidate solutions (antibodies) are evolved to either minimize or maximise the 
function. Each member of this population is a vector, in a certain shape space, 
which maps values to the parameters of the function F. Figure 3.2 provides a simple 
flowchart of the CLONALG algorithm. CLONALG exploits the cloning, mutation 
and selection mechanisms of clonal selection, to effectively evolve a set of memory 
cells that contain candidate solutions to the function F. 

CLONALG operates via the following procedure. A population P is initialized with 
random vectors, where P is set of candidate solutions for the given function. Each 
member of P is evaluated against the function, and the highest affinity n number are 
selected for cloning, where affinity can be measured as the distance to the optimal 
value. Clones are produced at a rate proportional to the affinity (so the better the 
affinity, the more clones are produced). Each clone is subject to a mutation rate, 
which is inversely proportional to the affinity. These clones are added to P and 
then the n highest affinity are selected to remain in the population. A number of 
low affinity members are then removed from the population and replaced with the 
same number of randomly generated members. This process is repeated until some 
convergence criteria is satisfied, or a fixed number of iterations has been performed. 

Experimentally, CLONALG has been shown to perform reasonably on standard 
benchmark tests for optimisation problems [de Castro Sz Von Zuben 2002]. How
ever, it has not been reported in the literature that CLONALG itself outperforms 
any well known technique. Other algorithms similar to CLONALG exist in the lit
erature, such as [Kelsey k, Timmis 2003] and [Cutello et al. 2004], with comparative 
studies showing that whilst CLONALG is effective, better results can be obtained 
with more specialised versions of the algorithm [Cutello et al 2004, Nicosia 2004]. 
Clonal selection based algorithms have also been developed for dynamic environ
ments, reporting good performance [Caspar & Hirsbrunner 2002, Kim & Bentley 
2002a, Kelsey et al. 2003]. CLONALG has also been adapted for simple pattern 
recognition problems, but the results from that work are less conclusive [White-
sides & Boncheva 2002]. It has also been adapted for more sophisticated learning 
systems where results are very encouraging indeed for static learning [Goodman et 
al. 2002, Watkins et al. 2003, Watkins & Timmis 2004] and for dynamic learning 
[Seeker et al. 2003a]. In this book, we have two applications of the basic clonal se
lection idea. The first is in Chapter 11 where we see the clonal selection algorithm 
applied to the problem of protein structure prediction. The second, in Chapter 15, 
describes a clonal selection based distributed supervised machine learning algorithm 
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Fig. 3.2. Flowchart of CLONALG 

3 .4 .3 I m m u n e N e t w o r k s 

In a landmark paper for its time, [Jerne 1974] proposed that the immune system is 
capable of achieving immunological memory by the existence of a mutually reinforc
ing network of B cells. This network of B cells occurs due to the ability of paratopes 
(molecular portions of an antibody) located on B cells, to match against idiotopes 
(other molecular portions of an antibody) on other B cells. The binding between 
idiotopes and paratopes has the effect of stimulating the B cells. This is because the 
paratopes on B cells react to the idiotopes on similar B cells, as it would an antigen. 
However, to counter the reaction there is a certain amount of suppression between 
B cells which acts as a regulatory mechanism. This interaction of B cells due to 
the network, was said to contribute to a stable memory structure, and account for 
the retainment of memory cells, even in the absence of antigen. This theory was 
refined and formalised in successive works by [Farmer et al. 1986, Perelson 1989] 
and combined with work by [Bersini & Varela 1994] was very influential in devel
opment of the immune network based AIS such as [Hunt & Cooke 1996, Timmis et 
al. 2000, Timmis & Neal 2001, Neal 2002]. Indeed, in Chapter 16 in this book, some 
of this theory is revisited to help understand the dynamics of AIS today. Whilst 
acknowledging that the immune network theory (by the time some AIS people had 
read it!), was out of favor with the majority of the immunological community, it 
still played a key role in the inspiration to develop new immune inspired algorithms. 
Rather than review all of the AIS immune network systems, we will focus on one 
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that is very similar to the CLONALG system described in section 3.4.2, but with a 
few simple additions. 

Artificial Immune Networks 

Based on the work of CLONALG, an algorithm known as aiNet was proposed in 
[de Castro Sz Von Zuben 2001]. As we have already said, aiNet is a simple extension 
of CLONALG, but exploits interactions between B cells according to the immune 
network theory. Figure 3.3 provides a flowchart for aiNet. As can be seen, the main 
difference between the two approaches, is that after new clones are integrated into the 
population, a network suppression function is employed throughout the population 
to remove cells that have similar affinities^. 

aiNet was initially designed for data clustering, but has been extended over the years, 
most recently as a hierarchical clustering tool in [de Castro & Timmis 2002b] and 
through hybridization with fuzzy systems methods by [Bezerra et al. 2005]. In the 
last paper, aiNet was augmented to take into account an adaptive radius measure 
instead of a fixed radius for B cell matching. This lead to a much improved version 
of aiNet, being able to achieve better separation of the data, forming clusters in 
less time. Work by [Castro & Timmis 2002] adapted aiNet for multi-modal function 
optimisation. In that paper, aiNet was also modified to be applied to the same 
optimisation problems as CLONALG, and was shown to have greatly improved 
performance over CLONAG, but this is not as comparable to other clonal selection 
bsised systems [Timmis 8z Edmonds 2004, Timmis et al. 2004]. However, it was 
recently identified that if careful thought wets given to the optimisation problem, 
the basic aiNet algorithm can be augmented to give significant gains in performance 
[Andrews & Timmis 2005]. 

3.4.4 Negative Selection 

Negative selection is a process of selection that takes place in the thymus gland. T 
cells are produced in the bone marrow and before they are released into the lym
phatic system, undergo a maturation process in the thymus gland. The maturation 
of the T cells is conceptually very simple. T cells are exposed to self-proteins in a 
binding process. If this binding activates the T cell, then the T cell is killed, other
wise it is allowed into the lymphatic system. This process of censoring prevents cells 
that are reactive to self from entering the lymph system, thus endowing (in part) 
the host's immune system with the ability to distinguish between self and non-self 
agents. However, as discussed in Chapter 7, this distinction is very contentious, and 
that debate will not be entered into here. 

^ It should be noted that this is a slight departure from the immune network theory, 
where both suppression and stimulation occur between cells 
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Artif icial N e g a t i v e Se lec t ion 

The negative selection principle inspired [Forrest ei al. 1994] to propose a negative 
selection algorithm to detect data manipulation caused by computer viruses. The 
basic idea is to generate a number of detectors in the complementary space and then 
to apply these detectors to classify new (unseen) data as self (no data manipula
tion) or non-self (data manipulation). The negative selection algorithm proposed by 
Forrest et al. is illustrated in Figure 3.4 and summarized in the following steps. We 
can define self as a set S of elements of length / in shape-space. Then generate a set 
D of detectors, such that each fails to match any element in S. With these detec
tors, monitor a continual data stream for any changes, by continually matching the 
detectors in D against the stream. This work spawned a great deal of investigations 
into the use of negative selection for intrusion detection, with early work meeting 
with some success [Forrest et al. 1997], but later works showing many limitations of 
the approach [Stibor et al. 2004, Stibor et al. 2005a]. 
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(a) Detector Generation (b) Monitoring Phase 

Fig. 3.4. Negative Selection Algorithm by Forrest et al. 

3.5 Building Artificial Immune Systems 
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When constructing an AIS, there are many computational and practical issues to 
consider. The first is computational complexity of the approach. This relates to the 
time and space required to generate the suitable number of detectors (members of 
a population) that are required for the job [Timmis et al. 2002]. For example, there 
are a number of works that outline the unacceptable computational complexity of 
the negative selection approach [Kim Sz Bentley 2002b, Stibor et al 2004, Stibor et 
al. 2005a] as there is an exponential relationship between the size of the data set 
to be used, and the number of detectors that it is possible to generate. However, 
other approaches within AIS, such as clonal selection and immune networks, seem 
not to suffer quite the same problem. The second aspect to consider is the data to be 
used. In the context of embedded systems for example, if one abstracts away from 
the system components and uses state machines, then one has to be careful that 
there is an accurate mapping between the state machine and the actual system, and 
ensure that the state machine adequately scopes the space to be immunised [Timmis 
et al. 2002]. Consideration here also has to be given to the way in which data is 
represented. The shape space paradigm proposes varying ways of data representation 
and interaction. However, when dealing with discrete values, such as those found in 
embedded systems, the method of defining affinity (i.e. seeing how similar one item 
is to another) is not as clear-cut as it may seem. This is coupled with the fact 
that mutation, even what might be thought of as a small amount, could have a 
huge impact on the meaning of the data. Should a binary shape space be employed, 
the mere flipping of one bit could indicate a huge shift in meaning of the state, 
rather than the small shift that may be desired. In both of these situations, domain 
knowledge can play a pivotal role in the success or failure of such as system [Timmis 
et al. 2002]. This type of problem is not unique to the design of AIS, but hinders 
many other biologically inspired approaches such as evolutionary algorithms. 
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3.5.1 Consider the Application Area 

[Freitas h Timmis 2003] outline the need to consider carefully the application domain 
when developing AIS. They review the role AIS have played in the development of a 
number of machine learning tasks, including that of classification. However, Freitas 
and Timmis point out that there is a lack of appreciation for possible inductive bias 
within algorithms and positional bias within the choice of representation and affinity 
measures. For example, recent studies by [Hart & Ross 2004], point out that the main 
effect on immune network algorithms may well be the way in which interaction is 
defined. Through the development of a simple model Hart and Ross demonstrate 
the evolution of various immune network structures which are considerably affected 
by the choice of affinity measure between two B cells, which in turn effects how B 
cells interact with each other. Whilst no concrete conclusions are drawn here, the 
message is clear: think before you design. This may be facilitated by the development 
of more theoretical aspects of AIS, which will help us to understand how, when and 
where to apply various AIS techniques. 

3.5.2 Design Principles 

There have been some previous attempts at providing design principles for immune 
systems, such as work by [Cohen & Segal 2001] and [Bersini k, Varela 1994]. However, 
work by Segal, whilst extremely interesting, focussed primarily on network signalling, 
and did not provide a comprehensive set of general design principles, or provide any 
test application areas for those principles. Work by Bersini, focussed on the immune 
network and self assertion ideas of the immune system to create design principles. 
Whilst being more concrete, these are still quite high level: 

Principle 1: The control of any process is distributed around many operators in 
a network structure. This allows for the development of a self-organising system 
that can display emerging properties. 
Principle 2: The controller should maintain the viability of the process being 
controlled. This is keeping the system within certain limits and preventing the 
system from being driven in one particular way. 
Principle 3: While there may be perturbations that can affect the process, the 
controller learns to maintain the viability of the process through adaptation. This 
learning and adaptation requires two kinds of plasticity: a parametric plasticity, 
which keeps a constant population of operators in the process, but modifies pa
rameters associated with them; and a structural plasticity which is based on the 
recruitment mechanism which can modify the current population of operators. 
Principle 4: The learning and adaptation are achieved by using a reinforcement 
mechanism between operators. Operators interact to support common operations 
or controls. 
Principle 5: The dynamics and metadynamics of the system can be affected by 
the sensitivity of the population. 
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• Principle 6: The system retains a population-based memory, which can maintain 
a stable level in a changing environment. 

These are potentially useful principles, that should be refined in light of immunologi
cal advances and possibly taken on board (to some degree) by the community. These 
need to be tested in various application areas, and refined to allow for the creation 
of not only a generic set of AIS design principles that are useful to the community, 
but also specific ones for specific application areas. With this, may come a better 
understanding of how to apply AIS, and avoid falling into the traps highlighted by 
[Freitas & Timmis 2003]. 

3.6 Future Directions 

In section 3.2.3 we described how the original AIS researchers were motivated by a 
number of computationally appealing properties present in the vertebrate immune 
system. It is true that today, current AIS researchers are still motivated by the 
same properties, as it apparent that all AIS to date fail to fully capture the com
plex operation of the immune system. What has changed is the increased scope of 
immunological theories that those working with AIS take inspiration from. For ex
ample, in recent years there has been a growing interest in the mechanisms of innate 
immune system in immunology [Germain 2004]. This has filtered down into the AIS 
community, resulting in AIS inspired by theories such as danger theory [Seeker et al. 
2003b, Aickelin et al. 2003] and innate immunity [Greensmith et al. 2005, Bentley et 
al. 2005]. In their summaries of the future for AIS, both [Garrett 2005] and [Hart & 
Timmis 2005] point towards an increased emphasis on the innate and homeostatic 
functions of the immune system as possible areas for AIS exploitation. In addition to 
the increased scope of AIS, there has been a recent and healthy rise in investigating 
the theoretical workings of various immune algorithms [Clark et al. 2005a, Stibor 
et al. 2005b]. The way in which AIS are built has also been addressed by work 
in [Stepney et al. 2005b]. This paper proposes a conceptual framework that allows 
for the development of more biologically grounded AIS, through the adoption of 
an interdisciplinary approach. Metaphors employed have typically been simple, but 
somewhat effective. However, as proposed in [Stepney et al. 2005b], through greater 
interaction between computer scientists, engineers, biologists and mathematicians, 
better insights into the workings of the immune system, and the applicability (or 
otherwise) of the AIS paradigm will be gained. These interactions should be rooted 
in a sound methodology in order to fully exploit the synergy. 

3.7 Summary 

We have presented in this chapter a brief, informal tour of AIS and their develop
ment over the years. Our aim has been to provide a starting place for the uninitiated 
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researcher to explore the world of AIS (please follow any interesting references!) and 
to appreciate the AIS chapters that follow in this book. As a final point, it is clear 
that AIS is still a young field of research, especially when compared to other bi
ologically inspired paradigms such as evolutionary algorithms and artificial neural 
networks. The AIS field, however, is starting to mature at an increasing rate, with 
work presented both here in Chapters 11, 14, 15 and 7 elsewhere [Timmis k, Bent ley 
2002, Timmis ei al. 2003, Nicosia et al. 2004, Jacob et al. 2005], exploring alter
native immunological ideas, design principles for AIS, and the theoretical aspects 
underpinning AIS approaches. 
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Summary. We review computational models of B cell and T cell receptors. We 
first consider string models where both antigen specific receptors on immune cells 
and antigens are represented by binary strings, or more generally, digit strings with 
a given number of letters. Various match rules are presented to describe the binding 
interaction between receptors and antigens. A second class of models is geometric 
models where receptors and antigens are represented as geometric shapes. A rule of 
interaction among receptors in shape space is introduced. Lastly, the random energy 
model is introduced where the binding interaction between receptors and antigens is 
quantified with an energy function derived from the physics of protein interaction. 
To compare these approaches, we explicitly calculate how receptor-ligand affinity is 
affected by a point mutation in different models. These calculations are relevant to 
understanding the correlation between the change in the sequence and the change 
in the binding strength. We finally review a method for connecting string models 
and shape space models in the context of analyzing antibody binding assay data 
relevant to the immune response against the influenza virus. 

4.1 Introduction 

The adaptive immune system, which can provide protection against a huge variety 
of pathogens, accomplishes this task by generating B cells and T cells that, to a 
first approximation, have different specificity receptors on their cell surface. The 
receptor diversity is called the repertoire size. Based on the size of the genes family 
used to encode B and T cell receptors, it has been estimated that the mouse genome 
encodes information for making at least 10^° different B cell receptors and of order 
10^^ T cell receptors (TCR). 

In order to build realistic computational models of the immune system it is desirable 
to capture much of this diversity. A mouse has been estimated to have about 10'̂  
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B and T cells. Thus, one needs the capability of representing repertoires of this 
size. In addition, one requires a method of computing the affinity of interactions 
between any of the 10^ B or T cell receptors and a diversity of ligands. Here we 
will review methods used to represent B and T cell receptors as well as the antigens 
they interact with, and compare and contrast the advantages and disadvantages of 
the various approaches. The models fall into three categories, digit strings models in 
which the length of the string and the alphabet size determine the repertoire that can 
be represented, geometric models in which receptors and antigens are given shapes 
in one, two or three dimensions, and lastly random energy models in which receptors 
are thought of as proteins that fold and take on a shape such that the energy of 
interaction or affinity can be computed between a receptor and an antigen. 

4.2 String Models 

The hallmark of the immune system is specificity. In order to represent the antigen 
specific receptor on a B cell or a T cell string models have been used. For example, 
if a receptor is represented by a binary string of length 32 then 2^^ or 4 x 10^ diff'er-
ent receptors can be represented. In addition to receptors, antigens, antibodies and 
MHC molecules have also been represented by strings. An advantage of this repre
sentation is that binding between molecules, e.g., between antibodies and antigens, 
each represented by a string can be converted into a string match problem, with the 
number of matches being monotonically related to the affinity. 

The first use of a string representation was by [Farmer et al. 1986], who described 
the dynamics of interactions among antibodies and antigens by a set of diff'erential 
equations, with the strength of the interactions determined by a string match score 
between the strings representing the various molecules. Binary strings were used and 
the strength of interaction was given by the number of complementary bits among 
sequences. In the simplest representation, and the one generally followed by later 
workers, the strings were of the same length and were aligned. The XOR operator 
was applied in order to efficiently evaluate when opposing bits were complementary 
(see Fig. 4.1). [Farmer et al. 1986] also raised the possibility of the sequences being 
of diff'erent sizes and the smaller sequence moved across the larger in all possible 
alignments. The largest number of complementary bits of all possible alignments 
is also another possible match rule. Rather than using complementary bits it is 
sometimes easier to say two strings match if they are identical and then use the 
number of mismatches, or the Hamming distance, as a metric between sequences; 
the closest sequences being the ones that have the highest affinity interactions. 

[Farmer et al. 1986] also introduced the idea of "metadynamics". In immune system 
models the population dynamics of lymphocytes, antibodies and antigen are fre
quently followed by constructing a differential equation for the time rate of change 
of each entity. For instance, one might say an antigen, Ag, is eliminated if it is rec
ognized by an antibody, with the elimination rate proportional to the affinity of the 
antibody-antigen interaction. If multiple antibodies are in the system then there is 
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0 1 0 0 1 1 0 

1 1 0 1 1 0 0 

1 0 0 1 0 1 0 = 3 matches 
Fig. 4 . 1 . The rule of complementary match for two binary strings. The XOR oper
ator is used to determine the positions in which a 0 matches a 1. 

one term for each antibody that binds the antigen. String matching determines which 
antibodies bind to the antigen and also give the strength of the match. The immune 
system is constantly evolving, new B cells are created in the bone marrow and enter 
the body. New antigens are encountered and hopefully eliminated. As these new 
entities are created or destroyed new differential equations need to be constructed 
to represent these entities, and the right hand side of these differential equations 
need to include the interactions between these newly formed entities, and molecules 
and cells already existing in the model immune system. The rules for generating 
these new equations are called met adynamics, and provide a way for automatically 
updating the model. Similar methods involving metadynamics are useful in models 
that aim to study the origin of life in which new molecules are being created from 
simpler ones and then interact with the existing system [Farmer et al. 1987]. The 
use of differential equation models in immunology is also described by Hone and 
Van Den Burg (Chapter 16) where the dynamics of establishing immune memory is 
discussed. 

The binary string model was extended by Celada and Seiden so as to include pep
tides, MHC molecules and T cells. Because peptides bind in the "groove" of an MHC 
molecule, the strings representing the peptide and MHC molecule were each half as 
long as the T cell receptor string. The peptide and MHC strings were then combined 
into a single string representing the MHC-peptide complex and the combined string 
was matched against T cell strings to determine the match score. The model was 
then used to answer questions like optimal number of MHC types per individual 
[Celada & Seiden 1992]. 

String representations need not be restricted to binary strings. For example, [Per-
cus et al. 1993] introduced strings with B letters, where B could be greater than 
2. They had in mind representing the physical properties of amino acids, such as 
charge (positive or negative) and hydrophobicity, which would give rise to a 3 letter 
alphabet, i.e B = 3, where each letter would match only one other, e.g. positive 
matched negative, and hydrophobic matched hydrophobic. They also introduced a 
match rule in which the match score or affinity of the interaction was related to 
the size of the largest substring of continuous matches. The biological interpretation 
was that as two molecules interact they do not necessarily interact over their entire 
surfaces but only over a subdomain, which here would correspond to the largest 
contiguous match region. 
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Digit-string representations using large alphabet sizes, e.g. m == 128 or m = 256 
proved useful in models of thymic selection [Detours &; Perelson 1999, Detours et al. 
1999, Detours Sz Perelson 2000, Chao et al. 2005]. Here T cells with receptors that 
match self peptides presented on MHC within a range of affinities survive, while T 
cells with affinities outside this range die. The idea is that T cells need to be able to 
recognize MHC and thus there is a minimal affinity needed to ensure their survival. 
This is called the positive selection threshold, Kp. However, if the affinity is too 
high, then the T cell could cause autoimmunity and hence it should be eliminated. 
This upper threshold is called the negative selection threshold, KN- Only about 
3% of T cells survive both positive and negative selection. Thus to model thymic 
selection one needs a model in which affinities change in very small increments. This 
can be done either by using very long bitstrings or by using digit strings over larger 
alphabets. Detours and Perelson in a series of papers exploited this representation 
to explain self MHC restriction and alloreactivity [Detours Sz Perelson 1999, Detours 
et al. 1999, Detours & Perelson 2000]. 

One difficulty in representing immunological phenomena is choosing the appropri
ate representation and match rule. Once a match rule is selected, parameters, such 
as string length and alphabet size, need to be calibrated to satisfy immunological 
criteria. [Smith et al. 1997] showed how the calibration could be done for models 
of antibody responses. For example, if one wants to represent a repertoire of 10^ 
antibodies then one must choose a string length and alphabet size consistent with 
this requirement. About 1 in 10^ B cells typically responds to an antigen. Thus, 
the match rule for determining when a B cell responds to a randomly encoun
tered antigen needs to be set to be consistent with this criterion. Lastly, there is 
some scattered data, that suggests the degree of cross-reactivity between antibod
ies. Cross-reactivity is the phenomenon where an antibody raised against antigen x 
also reacts with antigen y. Such cross-reactivity only occurs if antigens x and y are 
closely related and such information can also inform the choice of string length and 
degree of match needed to stimulate a B cell into antibody production [Smith et al. 
1997]. Once such calibration was done for antibody response. Smith et al. [Smith 
et al. 1999] were able to generate a realistic simulation of the antibody response to 
influenza vaccination, and then used the simulation to study the eff'ects of repeated 
yearly vaccination. Interestingly, they found that depending on relative locations 
among the two vaccines and the epidemic strain of influenza in shape space, the two 
vaccines may interfere with one another and not produce optimal protection, during 
the second flu season. 

4.3 Geometric IVIodels 

Another approach for modeling antibodies and antigens has been to represent the 
molecules as geometric shapes. For example, Segel and Perelson [Segal & Perelson 
1988] introduced a one-dimensional shape space in which antibodies were repre
sented as having binding sites with triangular grooves of depth x and antigens were 
represented as having epitopes that were triangles of height y (see Fig. 4.2). The 
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base of the triangles were equal so that an epitope of height y exactly would fit into 
the binding site groove of an antibody of depth x = y. Mismatches, measured by 
X — y, would reduce affinity. A two-dimensional shape space could be constructed 
in a similar manner by also allowing the base of the triangles to be different. Anti
bodies and antigens have also been represented by a set of three dimensional units 
arranged in a variety of shapes [Weinand 1990]. The representation one uses depends 
on the application. In the work of Segel and Perelson [Segal &; Perelson 1988] the 
idea was to develop a set of partial differential equations to represent the dynamics 
of the immune system. Changes in the B cell repertoire could then be visualized as 
densities in shape space. If the initial repertoire were uniform, then the density of 
B cells of shape x could be represented by a horizontal line, i.e. B{x) = a constant. 
Due to interactions with antigen certain B cells would grow and others would die, 
so the B{x) curve would now have peaks and valleys. This non-uniform distribution 
of B cells in the shape space would then provide a visually appealing representation 
of immune memory ("peaks"), and questions such as whether memory is localized 
within certain models could be addressed. 

Fig. 4.2. Antibody shapes described by a real number a; in a one-dimensional shape 
space. 

An alternative method for modeling interactions among B cells is placing the B cells 
on a lattice rather than in continuous shape space [Weisbuch 1990]. One could then 
establish a rule of interaction among B cells, such as only nearest neighbor B cells 
interact. In general, one can define an interaction strength, Jij, between B cell i and 
B cell j and utilize techniques from statistical mechanics to study the properties of 
lattices of interacting B cells [Perelson & Weisbuch 1997]. These methods were used 
for studying idiotypic networks [Perelson 1989]. Stepney (Chapter 12) reviews shape 
space models discussing various ways of mapping immune agents into geometrical 
space. 

4.4 Random energy models 

One problem in immunology that has attracted the attention of a number of mod
ellers is affinity maturation. In this phenomena the average affinity of antibody for 
an antigen increases with time during an immune response. This increase of affinity 
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is in part caused by mutational changes that occur in the genes that code for the 
variable region of the antibody. Various computational models have been developed 
to assign antibody affinity. Above we reviewed string match and geometric rules. 
Here we will look at other models that attempt to predict affinity and examine how 
affinity is predicted to change as the amino acid sequence of the antibody is varied. 
If one graphs affinity versus sequence, one would obtain a representation of an affin
ity or "energy landscape". It is known that some amino acid substitutions radically 
change affinity, whereas other substitutions do not change, or only slightly change 
the affinity [Berek & Ziegner 1993, Wysocki et al. 1986, Rudikoff et aL 1982, Panka 
et al. 1988, Roberts et al. 1987]. Given that the connection between affinity and 
amino acid sequence has not been established, random energy models have served 
as a starting point. Here the idea is that since we do not know the affinity of any 
given amino acid sequence, we assign it at random. Random energy theory has cap
tured the essence of the correlated ruggedness of landscapes in a variety of physical 
systems, especially spin glasses and in protein folding [Derrida 1980, Bryngelson Sz 
Wolynes 1987, Shakhnovich 1993]. 

A representative random energy model is the NK model developed by Kauffman 
[Kauffman et al. 1988, Kauffman Sz Weinberger 1989]. In the NK model the fitness or 
affinity of a protein of length N is given by the sum of the fitnesses of each amino acid. 
The fitness of each amino acid in turn depends on the amino acid in that position 
and the amino acids in K other positions. When K = 0 the fitness of each amino acid 
is independent of all other amino acids. Hence at each position there is a "most fit" 
amino acid and the fitness landscape has a single peak corresponding to the antibody 
with the most fit amino acid at each position. As K increases, the ruggedness of the 
landscape increases from a single peaked landscape to a multi-peaked landscape. If 
one starts at a random position on the landscape and then moves on the landscape 
always taking steps uphill, i.e., evolving toward higher affinity, then one can compute 
the average number of steps to reach a local optimum [Kauffman et al 1988]. This 
procedure was used by Kauffman and Weinberger [Kauffman & Weinberger 1989] to 
estimate the values K that corresponded to an affinity maturation process in which 
uphill steps corresponded to a mutation in an antibody V-region of a given length 
N. For iV — 112 they estimated K as about 40. The contribution of each amino acid 
to the affinity is affected by around 40 others in the 112 amino acid long V region. 
Other random energy models of affinity maturation have been studied by [Macken 
& Perelson 1989, Perelson & Macken 1995]. 

A generalization of the NK model was developed by [Bogarad & Deem 1999, Deem 8z 
Lee 2003] in which more information about the structure of an antibody was used to 
estimate its affinity. Because antibodies can be viewed at the structural level as being 
constructed from domains, in the generalized NK model, an antibody is represented 
by an amino acid sequence of length oi N x M, consisting of M domains with N 
amino acids each. Motivated by the physics of chemical interactions, the affinity of 
the antibody was calculated by first determining the energy E of the interaction 
between antibody and antigen. The antigen, as in the NK model is not explicitly 
given, but is implicit in the energy calculation. The energy of the antibody-antigen 
complex is assumed to have three components, one due to molecular interactions 
within a domain or as Deem calls them subdomains, (t/*^), interactions between 
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Fig. 4 .3 . Schematic diagram showing an example of subdomain interaction energy 
C/̂ ,̂ subdomain-subdomain interaction energy JJ^^-^^ ̂  and chemical binding energy 
C/̂ . Here a receptor is represented by a 12 letter sequence with M=3 subdomains 
(divided by dashed line) each of length N=4. Within a subdomain, interactions 
among all possible K=2 consecutive sites contribute to the subdomain energy, IJ^^. 
For instance, the second and third "amino acids" in subdomain 1, (02,03) in shaded 
boxes contribute the interaction energy 0-2(02,03) to IJ^^, The type of the first 
subdomain, CL\ is 2 here. The second amino acid in subdomain 2 and the forth 
amino acid in subdomain 3, represented by the boxes with a circle, contribute to 
jjsd-sd g^ ^23(02,04). The amino acid in the box with filled square, 04, contributes 
to the chemical binding energy, U^. 

subdomains {U^^ *^), and direct binding energy with the antigen at the contact 
sites {U"^) as shown in Figure 4.3. Thus, the total energy is represented as 

u = Y.<+Y. ^if + EUi' (4.1) 
i = l i>jf=zl i=zl 

where P is the number of antibody amino acids contributing directly to the binding. 

The zth subdomain energy, U^^ of subdomain type ai, is 

y^M{N^n<TT) 

N-K + 1 
( O j , Cij^l, ' ^j + K - 1 ) . (4.2) 

Here K is the number of interacting sites in a subdomain and the energy con
tribution by 2th subdomain is the sum of the contributions from all the possible 
consecutive segments of neighboring K amino acid sequences within a subdomain. 
All subdomains belong to one of L — 5 different types, e.g. alpha helix, beta-sheet, 
etc. Although, it is not clear if this degree of generality is needed in a computational 
model we include it as this was done in the original model. The energy contribution 
by the segment of K amino acids, crai(o},Oj ' j j ^ - j + i j • ,o*+K_i), may differ depending 
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on the subdomain type. Here a} denotes the amino acid at jih position in subdomain 
i. Amino acids are classified into only five chemically distinct types (e.g., negative, 
positive, polar, hydrophobic, and other) and hence are represented with a 5 letter 
alphabet. For each segment of K amino acids, the energy contribution a on within 
subdomain type a* is chosen from the normal distribution with mean 0 and variance 
1, and stored in an array, so if the same sequence of amino acids reappears in the 
same subdomain type it is assigned the same energy. 

The energy of interaction between subdomains i and j is given by 

jjsd—sd / ^ X ^ k / i i 

*^ ~ Y DM{M - 1) ^ ^ ' i W l ' • • •'0'3K/2' 

«L/.+.'---'«L)' (4-3) 

where D is the number of pairs of interactions between subdomains. The energy 
contribution from the kth interaction among subdomain i and j , cr^j is selected 
randomly depending on the amino acids in positions {ji, • • -^JK}- The positions of 
interacting amino acids are selected at random for each interaction (k^i^j). 

The ith chemical binding energy of the antibody to the antigen is given by 

Ur = -^cTiiatl), (4.4) 

where ajf denotes ilth amino acid in subdomain i2. The position of the ith con
tributing amino acid, (il,i2), and the unit-normal weight of the binding, <7« are 
chosen at random. Once we fix an antigen interacting with an antibody, the antigen 
is represented with a set of parameters in the energy of interaction between subdo
mains and chemical binding energy. Hence the interaction pattern of amino acids in 
the antibody is uniquely determined by a specific antigen. 

The affinity of an antibody to an antigen is a function of the total energy in Eq. (4.1), 

Ki = exp{a-bUi), (4.5) 

where a and b are constants chosen to give a realistic distribution of affinities [Deem 
& Lee 2003]. Note that the interaction strength U, and hence the binding affinity, 
depends not only on the sequence of the antibody but also on the antigen, since for 
a different antigen one would pick different contributions to C/* ,̂ [/̂ -̂̂ ^^ and Ui. 

This generalized NK model is clearly very complex because it was designed to mimic 
many of the features of real antibody-antigen interactions. However, because the 
energy is computed by summing a large number of random numbers corresponding 
to energy contributions it tends to generate a Gaussian distribution of energies and 
hence a log-normal distribution of affinities. If one were willing to abandon the 
property that a particular affinity is associated with a given sequence, one could 
simply pick an affinity at random from a log-normal distribution. However, if one 
is interested in the effects of somatic hypermutation where antibody sequence is 
changed by point mutation, the generalized NK model has the advantage of keeping 
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track of affinities of neighboring sequences. Thus this model has been used by Deem 
and colleagues to study affinity maturation of antibodies and a similar process of 
selection for higher affinity T cells [Deem k, Lee 2003, Park h Deem 2004]. 

4.5 Affinity distribution by a point mutation 

Because of the complexity of the generalized NK model it is of interest to compare 
the behavior of different models in predicting affinity when the antibody sequence 
is changed by point mutation. Experimentally, the effect of point mutation on the 
strength of binding has been systematically investigated by changing amino acids 
at specific points either in an antibody, T cell receptor, or antigen [Chen et al. 
1992, Brown et al 1996, Casson & Manser 1995, Churchill et al 2000, Lee et al 
2000, Pantophlet et al 2003]. 

4.5.1 Mutation and the string model 

The simplest receptor model is one based on a string representation. Consider a re
ceptor consisting of N amino acids, each amino acid classified into one of B different 
groups. Thus, the receptor is modeled by a string of length Â  using an alphabet 
size B. Assume each of the B amino acid types matches only one other type, e.g. 
positively charged matches negatively charged. Let the binding energy or match 
score between a receptor and an antigen be the number of complementary matches, 
EQ. For the given string with match score EQ^ a single point mutation generates 
a receptor with an energy that is either EQ^ EQ -\~ 1^ or EQ — 1. To generate EQ a 
non-matching amino acid at a given position would be changed into a new amino 
acid at that position but one that still does not match the antigen. To generate 
JEO + 1 a non-matching amino acid would need to be changed into a matching one. 
In a string of length N with EQ matches there are N — EQ non-matching positions. 
The probability of a mutation occurring in one of these non-matching positions is 
then (N — EQ)/N. Considering only mutations that change an amino acid of one 
type into another type, a single point mutation can change an amino acid to any 
of the other possible B — I amino acids. A change to a particular one will yield a 
match and a change to any of the remaining B — 2 will remain a mismatch. Lastly, 
to decrease the number of matches the mutation must occur in a matching position. 
This occurs with probability EQ/N. Summarizing, the probability of having each 
energy value after a single mutation is 

P{E-Eo)- ^ ^ _ ^ 

P{E = Eo - 1) = ^ . (4.6) 
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Figure 4.4a depicts the distributions of the new energies in a string of length N = 20 
with an alphabet size B = 3, starting from EQ = 5, 10, and 15. Note that if you 
mutate a string with a high number of matches, e.g., EQ = 15, it is much more likely 
to decrease the match score than to increase it. Thus the probability of having 14 
matches after one mutation is 0.75, while the probability of having 16 matches is 
0.125. Conversely, if the original number of matches is low, then it is more likely that 
the match score will improve through mutation. For EQ = 5, the probability of having 
6 matches after mutation is 0.375, while the probability of having 4 matches is 0.25. 
Note that each distribution is asymmetric and that the probability of improving the 
match score is smaller and the variance of the distribution greater as the starting 
match score increases in value. More importantly, with this type of complementary 
match rule mutation can only change the match score by one unit and hence the 
fractional change is at most l/AT. For large string length N such a rule thus gives very 
conservative changes in the match score under mutation. This does not seem very 
realistic for antibodies which can lose all binding or increase their affinity 10-fold 
under some circumstances [Brown et al. 1996]. 

A match rule that might more closely mimic this property of having large changes 
in match score as the potential outcome of a single point mutation is the consec
utive match rule. The match score is given by the maximum number of continu
ous complementary matches, i.e. the length of the longest matching substring. The 
probability distribution of a new match score after one point mutation is shown in 
Fig. 4.4b. Computing this distribution in analytical form is beyond the scope of this 
paper, and we have used a Monte Carlo (MC) method to compute the distributions. 
With this match rule, a single point mutation generates diverse values of match 
scores by splitting matches, adding to the end of an existing run of matches, and 
by allowing two continuously matched segments separated by a single mismatch 
to join. Examining Fig. 4.4b one notices that when EQ — 15 it is extremely un
likely to generate a match score of 16 since depending upon whether the run of 
15 matches is in the middle of the sequence or at one end there are either one or 
two positions in which a mutation can increase the match score. At each of those 
positions the chance of the correct mutation is only l/(-B — 1). And the position 
next to the mutation point should be unmatched, an event that occurs with prob
ability (B — l)/B, assuming such a position exists, i.e. that the mutation site is 
not an end point. It is easy to see for N = 20 and B = 3 this probability is 
2/6 X 1/20 X 1/3 + 2/6 x 1/20 x 1/3 + 2/6 x 1/20 x 1/2 + 2/6 x 2/20 x 1/3 = 0.031. 
While this not surprising, it is somewhat surprising that when ^o = 5 or £"0 = 10 
that the probability of increasing the match score by mutation is still very small 
and that in all three cases it is much more likely to decrease the score than increase 
it. Similarly, when making mutations in highly evolved proteins such as antibodies 
it is much easier to lower affinity than to increase it. Whether this rule quantita
tively captures the correct probability distribution for these events remains to be 
determined. 
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Fig. 4.4. The distribution of the new energy (E) or match score obtained by a point 
mutation of a given receptor with Eo = 5, 10, 15 for the rule of complementary match 
(a), consecutive match rule (b) and NK model with N = 20 and B = 3 {c) and (d). 
In (a) and (d), points represent the results of MC simulations and dotted lines 
represent the analytical predictions in Eqs. (4.6) and (4.9). In (c), the distribution 
of the new energy P{E) is shown for the NK model when the energy before the 
mutation, ^o = 15, and the value of K is changed. For the MC simulations, we have 
done 10^° samplings averaging over random sequences. In (d), the distribution of 
the new energy with K = 15 is depicted for different values of the previous energy 
Eo=b, 10, and 15. 

4 .5 .2 M u t a t i o n a n d t h e N K m o d e l 

The other class of match rules involve the random energy models. For the standard 
NK model the energy of a receptor of length N is given by the sum of the energetic 
contributions of the amino acids at each position, i.e. 

E = 2_^ aa{aa,ao,,aocr " , «a )? (4.7) 
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where each site energy cr̂  is a random number uniformly distributed between 0 and 
1, depending on the amino acid at site a^ aa-, and the amino acids at K randomly 
chosen other sites, a i , a ^ , • • • , a ^ . We estimate the probability distribution of the 
new energy by one point mutation using the central limit theorem. Since {K -{-1) 
sites contribute to the energy of each site, one point mutation alters {K -\-l) site 
energy values by {K + 1) independent random samplings of the interval [0, 1]. In 
the limit of large K, the sum of the new site energies is normally distributed with 
mean {K -f l ) / 2 and variance {K + 1)/12. Before mutation the average energy per 
site is EQ/N and thus the average contribution of the K •\-l sites that change by 
mutation is EQ{K + l)/iV. The new energy contribution of these sites, x, replaces 
the old contribution. Hence a good approximation for the total energy, E^ after a 
point mutation on a string with EQ, is given by 

E = Eo- Eo^^^^^ + X, (4.8) 

with P{x) = ^Q/{7r{K + 1)) exp{-6/{K-\-l){x-{K-\-l)/2f}. Then the distribution 
of E is given by 

/ 6 6 / p p , I F , ( ^ + 1) ( K + 1 ) N 2 

P ( ^ ) ^ 1 ^ e " ( ^ + ^ ^ ^ " ^ " + ^ " ~ —^ . (4.9) 

As the value of K increases, a point mutation gives rise to a mean value of the 
energy, E, close to (X + l ) /2 independent of EQ. 

The distribution of the new energies, P{E), for a receptor with Eo = 15 after one 
point mutation is shown in Fig. 4.4c for different values of i^ by MC simulations. The 
higher K, the less correlated are the energies before and after mutation. Thus, by 
changing the value of K, one can control the level of correlation between the energy 
values before and after a point mutation. Figure 4.4d presents the distribution for 
E for Eo = 5, 10, and 15 for A/̂  = 20 and K = 15 obtained by MC simulations and 
by Eq. (4.9). With K — 13 and N = 20, the distribution of the new energy does 
not depend strongly on the energy before a mutation. We plot the distribution of 
E for Eo = 28, 56, and 84 for N =^ 112 and K = 40, which are values estimated by 
Kauffman and Weinberger (1989) for affinity maturation [Fig. 4.5]. A single mutation 
shifts the distribution of new energy toward the mean energy of the NK model, N/2. 

4.5 .3 M u t a t i o n in t h e genera l ized N K m o d e l 

For a generalized NK model, one is summing a large number of random energy 
contributions, each with mean 0 and variance 1. Hence the energy distribution will 
approximate a Gaussian distribution with the mean 0. Because the variance of each 

variance of the random variable X -f- y + Z, where 
X, y , and Z are independent normal random variables with the variances cri, cr2, and 
<J3 is criH-crl+crl, the variance of the generalized NK model energy will be 3 regardless 
of the model parameters. Figure 4.6(a) shows that the energy distribution of random 
sequences in the generalized NK model is fit well by a Gaussian distribution with 
mean 0 and variance 3 for JFC = 10 and K — 2. 
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Fig. 4 .5 . The distribution of the new energies (E) by a point mutation of a given 
receptor with ^o = 28, 56, 84 for NK model. Here we use A/" := 112 and K̂  =:= 40 in 
the analytical prediction given by Eq. (4.9). 

Let us now calculate for a generalized NK model the distribution of the new energies 
obtained after a point mutation in sequences with initial energy EQ. We first estimate 
the average number of changes in each energy term. For given N and K, the average 
number of new energy contributions to the subdomain energy, 5^^, is 

K-l N-K+l 

i=l i = K 

_ K{N-K + 1) 
N 

N 
i=N-K+2 

(4.10) 

since one point mutation changes K values of a if the mutation site is located 
between positions K and N — K -{- 1, or changes i values of a if the mutation site 
is located between positions i = 1 and 2 — iC — 1, or changes N — i -\- 1 values of 
a if the site is between i = N — K -^ 2 and N. One point mutation also changes 
l^sd-sd __ ^j^ — I) D K/{2N) values of a within a subdomain interaction energy 
term, because K/2 random positions are selected out of N in each U^ 
Eq. (4.3). The average number of substitutions by one point mutation in U^ 
P/{MN). 

term in 
is 

The average contribution of each a term before a mutation, x, in a sequence with 
total energy EQ in Eq. (4.1) is 

^ 0 

y/M{N -K-hl) + y/DM(M - l)/2 + VP' 
(4.11) 

Since the average new contribution of each a to the total energy is 0, the mean of 
the new total energy, E is 
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Fig. 4.6. (a) The distribution of the total energy (E) of random sequences in the 
generalized NK model with M = 10, N = 10, D = 4 and P = 5. The energy 
distributions from MC simulations with 10^ samplings for i^ = 2 (circles) and 
J^ = 10 (squares) are well fitted by a Gaussian distribution with the mean 0 and 
the variance 3 (dashed line). (b) The distribution of the new energy, E, after a point 
mutation as a function of the energy Eo — 2.5 (solid line) before the mutation. 
The circles (squares) represent the distribution of the new energy over 10^ MC 
samplings for K == 2 (i^ — 10). The dashed hues present the analytical estimates of 
the distribution for jRT = 2 and î T := 10 from Eq. (4.14). 

E = E. 

^Eo-

y^M{N -K+1) 
S'^^-x Qsd—sd '^ QC 

DM{M-1) y/p 

Eo{K{N -K-\- 1)/N + (M - 1)DK/(2N) + P/{MN)} 

y/M{N -K+l) + y/DM{M - l ) /2 + VP 

(4.12) 

and the variance of the new energy, s^, is 

s^ = 
1 -5'"̂  + 

M{N-K-V1) DM{M-1) 
2K+1 

MN ' 

Qsd—sd 1̂  -'- QC 

The distribution of the new energy E is thus 

P{E) = 
MN MAT / p p,x2 

27r(2K + 1) 

(4.13) 

(4.14) 

where E is given in Eq. (4.12). 

Figure 4.6b shows the distribution of P{E) for EQ = 2.5 and iT = 10 and iiT = 2 
by MC simulations and the prediction from Eq. (4.14). As we increase the value 
of K, the mean of the new energy deviates from Eo and the variance increases. In 
comparison with the standard NK model, we can control the mean and the variance 
of the new energy by one point mutation in more diverse ways. For example, the 
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change in the mean of the new energy in the NK model always accompanies the 
change in the variance of the distribution of new energies, Eq. (4.9). However, in the 
generalized NK model one can change only the mean of the new energy by fixing 
the variance, as can be seen from Eqs. (4.12) and (4.13). 

4.6 Connection between string models and shape space 
models 

Experimentally, one can measure the correlation between amino acid sequence dif
ference and antibody binding difference. This approach has been used to study 
the influence of evolution of viruses such as influenza A and HIV on the ability of 
antibodies to either bind or neutralize the virus [Richman et al. 2003, O'Connor 
2002, Binley et al. 2004]. From a modeling prospective it is important to know if 
changes in amino acid sequence of a real protein, which we model say as changes 
in a string representation, translate in a simple manner into changes in antibody 
binding that can be predicted from simple models. Further, as measured by anti
body binding one would expect that as antigen sequence changes antibody binding 
will be affected. Assuming this is the case, one in principle, can define the distance 
between two antigens by their difference in binding to a given antibody. We expect 
that the correlation between sequence and antigenic distances, identified through 
binding measures, may provide a connection between string models or shape space 
models and the real biology. 

This type of approach has been developed by [Lapedes Sz Farber 2001, Smith et 
al. 2004] and can be used to describe the evolution of influenza virus. The anti
genic properties of influenza viruses are commonly characterized using the hemag
glutination inhibition (HI) assay. The major protein found on the surface influenza 
virus, hemagglutinin, can bind and aggregate red blood cells. When antibodies bind 
hemaglutinin they prevent red cell aggregation. The HI assay measures the titre of 
antibody needed to prevent agglutinination. In trying to determine the influenza 
strains to put into a vaccine, one obtains antibody raised against one flu strain and 
then tests its ability to inhibit agglutinination of other viral strains. If an antibody 
raised against one strain can prevent agglutination of the others then the hemaglu
tinin on the two strains should be antigenically similar. By doing multiple tests of 
this type, one can generate a matrix of titre values in which the i,j entry gives the 
titre of antibody raised against virus i needed to inhibit agglutination of virus j . 

The HI matrix can then be analyzed by multidimensional scaHng methods (MDS) 
[Shepard 1963, Shepard 1964]. In this method MDS is first used to construct the 
dimension of the shape space needed to represent this binding data. Here the idea is 
to represent the HI data as distances such that antibodies and antigens are close if 
they bind. First, the rank order of HI assay values are determined and ordinal MDS 
[Lapedes & Farber 2001] is used to match the distance order among points repre
senting the virus strains and antibodies in shape space with the rank order of the HI 
assay values. The distances between points representing M antigens and N antisera 
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are labeled as D^iji, 0^2 p, • • •, D^MN JMN according to the rank order of HI data 
values, where the closest distance is D^iji corresponding to the antigen antibody 
pair with the maximum HI value. Here distance is defined as a Euclidean distance 
among the coordinates of antigens and antisera in a shape space of dimension d. 
The goal of ordinal MDS is to find the coordinates of MN points in shape space that 
satisfy the distance order, Diiji < 0^2 p < D^s^jS •• • < D^MNJMN for the given 
rank order of HI values, H^iji > Hi2j2 > HiSjS •• > H^MNJMN. Lapedes and 
Farber [Lapedes 8z Farber 2001] used the following energy function, which is to be 
minimized to satisfy the distance order, 

c(=MN 

E = - J2 log(p(Aa+i,,«+i-A«,,«)), (4.15) 
a = l 

where g{x) = 0.5(1+tanh(a;)). For the influenza data they were analyzing they found 
dimension 5 was the smallest dimension in which the distance order in shape space 
agrees with the rank order of HI values. Once the dimension of shape space was 
established, the distances Dij were plotted against log2{Hlij) and the relationship 
D = C — log2(if/), where C is a constant, appeared to summarize the relationship 
between HI values and shape space distances. 

The next procedure is to determine the relative coordinates of the points representing 
viruses and antisera using metric MDS for which the distance between the HI values 
itself is an input. From the relationship between the shape space distance and the 
HI assay value, D — C — \og2{HI), metric MDS uses the following energy function 

N M 

E = J2 J2(^i-log^HIij-D,j)\ (4.16) 

with bj set to the log2 of the maximum HI value for antiserum j . Dij is the shape 
space distance between antigen i and antiserum j . By minimizing the energy in 
Eq. (4.16), all the coordinates of antigens and antisera were identified for influenza 
A (H3N2) viruses from 1968 to 2003 [Smith et al. 2004]. From the coordinates in 
shape space, the antigenic distances among viruses were then measured. Calculated 
antigenic distances were compared with the sequence distances, either amino acid 
substitution distance or maximum Hkelihood phylogenetic tree distance [Smith et 
al 2004]. 

Interestingly, antigenic distance among influenza viruses showed a linear relationship 
with sequence distance. Thus, at least in this case, shape space distance and genetic 
(sequence) distance were found to be well correlated. This may not be true for all 
viruses and in particular for HIV. 

4.7 Summary 

We have shown how various methods of representing B and T cell receptors, anti
bodies, and antigens have been used in computational models of the immune sys
tem. While these methods have provided insights into immunological phenomena 
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there is, as yet, no consensus on the best or most accurate representation of recog
nition molecules in the immune system. Hopefully, future work will suggest new 
representations or provide more evidence about the relative merits of the different 
representations presented here. 

Acknowledgments 

This work was done under the auspices of the U.S. Department of Energy under 
contract W-7405-ENG-36 and supported by NIH grants AI28433 and RR06555 and 
the Human Frontiers Science Program grant RGPOOlO/2004. 



Modelling Immunological Memory 

Simon Garrett^, Martin Robbins^, Joanne Walker^, William Wilson^, and Uwe 
Aickelin^ 

^ Computational Biology Group, Department of Computer Science, University of 
Wales, Aberystwyth, SY23 SPG. Wales, UK. {smg,mjrOO}Qaber.ac.uk 

^ School of Computer Science (ASAP), University of Nottingham, Nottingham, 
NG8 IBB. England, UK. {w.wilson,uwe.aickelin}Qnotts.ac.uk 

Summary. Accurate immunological models offer the possibility of performing high-
throughput experiments in silico that can predict, or at least suggest, in vivo phe
nomena. In this chapter, we compare various models of immunological memory. We 
first validate an experimental immunological simulator, developed by the authors, by 
simulating several theories of immunological memory with known results. We then 
use the same system to evaluate the predicted effects of a theory of immunologi
cal memory. The resulting model has not been explored before in artificial immune 
systems research, and we compare the simulated in silico output with in vivo mea
surements. Although the theory appears valid, we suggest that there are a common 
set of reasons why immunological memory models are a useful support tool; not 
conclusive in themselves. 

5.1 Introduction 

One of the fundamental features of the natural immune system (NIS) is its abil
ity to maintain a memory of previous infections, so that in future it can respond 
more quickly to similar infections [Sawyer 1931]. The mechanisms for immunological 
memory are still poorly understood and, as a result, are usually highly simplified 
during the construction of artificial immune systems (AIS). 

Although all AIS are inspired by the immune system, see Chapter 3 of this book, 
here we study more detailed immunological models. Immune system models will be 
required by theoretical immunologists if there is to be a significant increase in the 
generation of new ideas in the field because computational simulation is considerably 
faster than laboratory experiments. So far, however, this has not been practical 
because the granularity of the simulations has been far too large, and single systems 
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are able to either generate high-level, global immune simulations, or detailed but 
partial simulations, but not both. 

We differentiate between a model and a metaphor. In AIS there are several 
metaphors, such as clonal selection methods, negative selection methods, and net
work methods that provide computational tools for the AIS practitioner. These are 
not models. Models are an attempt to create an artificial system that displays the 
same behaviours as another (normally natural) system. Metaphors simply use the 
natural system as inspiration for an algorithmic device. 

Here we focus on the creation and use of immunological models in immunology. 
There may be side-effect benefits from these models that inspire the discovery of 
new computational methods in AIS, but that is not our central aim here. We outline a 
system, still under development, that can provide fast, detailed immune simulations, 
and which is beginning to suggest in vivo effects with enough accuracy to be useful as 
an immunology support tool. We choose immunological memory as our application 
area. This chapter: 

• Provides a survey of immunological memory, including well-known theories, and 
a new immunological memory theory that may be of interest to AIS practitioners. 

• Provides a survey of existing immune simulation systems. 
• Describes how we built and tested a simple set of immunological memory models, 

and then expanded this approach to a more advanced, generic simulator. 
• Describes how we tested the validity of a new theory of immunological mem

ory [Bernasconi et al. 2002]. First we used the advanced immune simulator to 
generate in silico results from the new theory. Then, since this theory was gen
erated in response to in vivo results, we evaluated the reliability of that theory 
by comparing our in silico results with the in vivo results. 

Our advanced simulator is fast, even when simulating 10^ lymphocytes, the number 
present in a mouse. It also has the ability to simulate cytokine concentrations, which 
proved vital in simulating the work of [Bernasconi et al. 2002]. The simulator's 
speed and flexibility allows it to be applied to tasks that were previously impossible. 
Furthermore, our new simulator is not just a one-off immune simulation for a single 
task, rather it is designed from the ground-up as a reusable, flexible tool for research. 

5.2 Background 

5.2.1 Immune Memory 

As with many aspects of immunology, our understanding of the processes underly
ing immunological memory is far from complete. As Zinkernagel et al say, in their 
seminal paper on viral immunological memory, '^Browsing through textbooks and 
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authoritative texts quickly reveals that the definition of immunological memory is 
not straightforward." [Zinkernagel et al. 1996]. Many of the questions they raised 
are still relevant almost ten years later. There are several theories, some of which 
appear mutually exclusive, and there is experimental evidence used to support al
most all of these theories. Before examining the techniques for modelling theories of 
immunological memory, we need to discuss the theories themselves. 

It is now widely accepted that hyper-sensitive memory cells exist, and research has 
been conducted in order to describe their attributes and behaviours, e.g. [McHeyzer-
Williams k, McHeyzer-Williams 2005]. Memory cells come in at least two varieties: 
memory B-cells and memory T-cells. These cells are formed during (or soon after) 
an immune response. Acute viral infections induce two types of long-term mem
ory: humoral immunity, in which B-cells produce antibodies to tag cells infected by 
viruses, and cellular immunity, in which T-cells, activated by specific viral antigens, 
kill the virus-infected cells and also produce cytokines that prevent the growth of 
viruses and make cells resistant to viral infection^. 

It has been established that a memory of an infection is retained for several years 
or even decades [Sawyer 1931, Paul et al. 1951]. One way to measure the strength 
of this immune memory is by counting the population of specific memory cells. 
This figure tends to fall rapidly immediately after an infection, reaching a stable 
(but reproducing) level that is maintained over many years or decades, even in the 
absence of re-exposure to the antigen. The challenge facing immunologists is to 
discover how these cells are maintained. 

Underlying these issues, it seems likely that some sort of homeostasis mechanism 
maintains a stable total population size of memory cells. Evidence suggests that the 
total number of memory cells in the body must remain roughly constant, and it has 
been shown that any increase rapidly returns to this resting concentration [Tanchot 
& Rocha 1995]; indeed, it is common sense that the number of cells could not increase 
indefinitely within the fixed volume of the immune system's host. One possible 
explanation for this is that memory cells (particularly T-cells) release cytokines 
that have an inhibitory effect on any enlarged antibody sub-population. 

Overall, what diff'ers in the theories of immunological memory is: (i) how memory 
cells are formed, and whether they are qualitatively different to other B- and T-cells, 
and (ii) how memory cells are maintained in the long term, so that the memory of 
the primary response is not lost by cell death. 

Long-Lived Memory Cell Theory: Given that lymphocytes (both B- and T-
cells) differentiate into 'memory cells', and that these memory cells are then highly 
responsive to the original antigenic trigger, the simplest way of implementing this 
in nature might be to invoke very long-lived memory cells. In this case, we would 
assume that there is no cell-division, the memory cells just live a very long time: 
moreover they must do so if they are to preserve immunity for many years. Is this 

^ from http://www.emory.edu/EMORY_REPORT/erarchive/2000/February/ er-
february. 21/2_2 l_OOmemory.html. 
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possible, since the majority of our cells have a life-span much shorter than that of 
the body as a whole, and so cells are continually dying, and being renewed? 

Zinkernagel et al say that there's no convincing evidence for this type of pheno-
type [Zinkernagel et al. 1996] and current opinion, such as McHeyzer-Williams and 
McHeyzer-Williams', agree [McHeyzer-Williams Sz McHeyzer-Williams 2005]. Fur
thermore, experimental evidence contradicts the long-lived memory cell theory. A 
series of experiments on mice showed that memory T-cells can continue to divide 
long after any primary response [Tough & Sprent 1994, Tough et al. 1996]. Since a 
stable population is maintained, this means that memory cells must also be dying 
at a similar rate, and are therefore not as long-lived as originally believed. 

Furthermore, it has been known for decades [Sawyer 1931, Paul et al. 1951] that 
antibody produced in response to an antigen can persist at significant levels in 
serum for years after the initial infection has occurred. Antibodies cannot survive in 
the body for a particularly long length of time, so we can conclude that plasma cells 
are sustaining these concentrations (the primary source of antibody). The problem is 
that plasma cells, in mice, have been shown to have a life-span of just a few months 
[Slifka et al. 1998], and that they are only produced by differentiating memory cells. 
This evidence shatters the theory of long-lived memory B-cells, and draws us to the 
conclusion that memory B-cells - like their T-cell equivalents - are being continually 
cycled long after any infection has been dealt with. 

E m e r g e n t M e m o r y Theory : To address these issues, a Emergent Memory theory 
suggests that there are no special memory cells as such, rather the effector cells 
naturally evolve towards highly specific cells, and are preserved from apoptotic death 
via some sort of 'preservase' enzyme, such as telomerase [Weng et al. 1997]. Although 
it is unlikely that emergent memory is stable in itself [Wilson & Garrett 2004], the 
process would explain how memory cells are created: they are just specialised forms 
of effector cells. 

telomere 
Telomeres protect the tips of the 
DNA in our cells ~ including 
immune cells... \ / chromosome 
When they get too short, the cell 
cannot reproduce further. 
Telomerase increases the length of 
the telomeres (adds TTAGGG x n) 

Fig. 5 .1 . Telomeres protect the tips of our chromosomes, and allow cells to repro
duce successfully. 
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Each cell in our bodies can reproduce only a predefined number of times, as defined 
by the length of its telomeres. Telomeres are DNA sequences that 'cap' and protect 
the tips of our chromosomes, which are shorted each time the cell reproduces, indeed 
(Fig. 5.1), "... each cycle of cell division results in a loss of 50 - 100 terminal 
nucleotides from, the telomere end of each chromosome.'''' [De Boer & Noest 1998]. 
What if the degree of telomere shortening were inversely proportional to the affinity 
between the cell's antibodies and antigen? In that case strongly matching immune 
cells would tend to survive longer than weakly matching ones. 

This principle is not new in immunology - de Boer has suggested a model based on 
similar concepts [De Boer & Noest 1998]. Button, Bradley and Swain agree that the 
death rate is a vital component required in establishing robust memory, "/t stands to 
reason that activated cells must escape cell death if they are to go on to he memory. 
Thus, factors that promote the survival of otherwise death-susceptible T cells are 
candidates for memory factors.'''' [Button et al. 1998]. 

Consider the impact of this hypothesis in the context of different types of immune 
cells. Grayson et al state that, "... memory T-cells are more resistant to apoptosis 
than naive cells ... Re-exposure of memory cells to Ag [antigen] through viral infection 
resulted in a more rapid expansion and diminished contraction compared with those 
of naive cells.^'' [Grayson et al. 2002]. This indicates that memory cells would have 
lower (but not zero) death rates, and higher proliferation rates, so the the cell 
population would naturally contract to long-lived (i.e. high-affinity) cells over time. 

Telomerase may not be the only biological mechanism that can explain the evolu
tion of immune cells into longer lived, higher affinity memory cells, an alternative 
explanation underpinning the longer life-span of memory cells is provided by Zanetti 
[Zanetti & Croft 2001]: the ^^...selection of B-cells destined to become memory cells 
takes place in GCs [germinal centres] and is controlled by the expression of intracy-
toplasmic molecules (Bcl-2 and Bcl-x) which prevent a form of cell death ... together 
with the concomitant suppression of signals from cell surface proteins that lead to 
death.''^ Although differing from the telomerase hypothesis, the implications would 
be the same: memory cells appear to reflect normal immune cells that have naturally 
evolved to develop a lower death rate, ensuring their survival over other cells such 
as effectors. 

The problem with the Emergent Memory theory is that it is very cell-specific. How 
can a concentration of cytokines ensure a high affinity cell lives longer than a lower 
affinity cell in almost the same location? 

Residual Antigen Theory: Several reports suggest that protein antigen can be 
retained in the lymph node (e.g. [Perelson & Weisbuch 1997]), suggesting that nor
mal lymphocyte function cannot remove all traces of a particular class of antigen. 
This is a natural result of the immune system being focussed on particular locations 
in the body. Whilst most antigenic material will be cleared by the immune system, 
causing an immune response, some antigenic material will escape a localised immune 
response long enough to reproduce. The immune system then quickly establishes a 
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steady state between immune response and antigenic population size, and the im
mune system's population is stimulated by the normal hypermutation response. 

Therefore, it is possible that the immune system does not completely remove all 
antigenic material from the host, either because small concentrations of antigenic 
cells may remain long enough to reproduce, or because the immune system itself has 
retained some of the antigenic material in follicular dendritic cells (FDCs). These 
FDCs then slowly release the antigenic material into the host, to stimulate a low-
level immune response. Zanetti et al say, "T/ie prevailing view is that maintenance 
of B cell memory ... is a function of the persistence of antigen on FDCs ... only a 
few hundred picograms of antigen are retained in the long term on FDCs, but these 
small amounts are sufficient to sustain durable and efficient memory response.'''' 
[Zanetti k, Croft 2001]. In either case, this would keep the immune system active 
enough to sustain memory cell populations. This idea has been supported by research 
suggesting that B-cell memory is particularly sensitive to residual antigen [Tew et 
al. 1990]. 

In recent years however, compelling evidence has been presented suggesting that the 
cycling of memory T-cells continues to occur without any of the specific antigen being 
present [Lau et al. 1994], which would mean that these cells must be responding 
to some other stimulus. Although some debate has occurred [Manz et al. 2002, 
Zinkernagel 2002], this view is now widely accepted by immunologists [Antia et al. 
2005]. 

An additional objection stems from an evaluation of the performance of such a 
system. How could it be efficient, from an evolutionary point of view, to expend 
resources on what is essentially a rote learning approach to memory? We know, 
from Machine Learning, that rote learning is the least efficient method of storing 
learned information, and it does not allow for generalisation. Although, there is 
an element of generalisation inherent in the Residual Antigen theory due to the 
memories of previous infections overlapping with new infections, and providing a 
(weak) generalised response, it is questionable whether there is enough generalisation 
to make this an effective source of immune memory. 

It may seem that antigen persistence is important for a model of immune memory, 
to ensure that the high affinity memory cells are sustained over long periods, but 
there is another, related possibility. Perhaps memory cells do not need stimulation 
by antigen; they simply proliferate periodically. Would this represent another evo
lutionary step for an immune cell in order for it to differentiate into a memory cell? 
Grayson et al identified the discrepancy between the long term behaviour of memory 
cells and naive cells and state that, "... memory cells undergo a slow homeostatic 
proliferation, while naive cells undergo little or no proliferation.'''' [Grayson et al. 
2002] (our emphasis). If this is the case, do memory cells actually need persistence 
of the antigen to survive? 

Even if re-exposure is not necessary, Antia et al conclude that "... estimates for 
the half-life of immune memory suggest that persistent antigen or repeated exposure 
to antigen may not be required for the maintenance of immune memory in short-
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lived vertebrates; however, ... repeated exposure may play an additional role in the 
maintenance of memory of long-lived vertebrates.^^ [Antia et al. 1998]. We choose to 
include antigen persistence in the model presented here. 

Immune Network Theory: Network theory is based around the possibility that 
the immune system maintains and triggers memory by internal, not external stim
ulation. It suggests that immune cells, particularly lymphocytes, present regions of 
themselves that are antigenic to other immune cells. This causes cycles of stimulation 
and suppression, which, while begun by an external antigenic source, are continued 
and maintained even in their absence, and are thus a form of memory [Farmer et 
al. 1986]. A network of interactions between immune cells is widely believed to ac
count for memory pool homeostasis [Zeng et al. 2005, Schluns k. Lefrancois 2003], 
and certain immune cells are even able to form physically connected networks of 
tunneling nanotubules in vitro [Watkins & Salter 2005], but little evidence has been 
published recently in the major immunology journals for a strong role of the kind 
of co-stimulation described above. 

Heterologous and Polyclonal Memory Theories: It has been observed that 
during an immune response, populations of memory T-cells unrelated to the antigen 
may also expand [Bernasconi et al. 2002, Tough et al. 1996], suggesting that perhaps 
serological memory could be heterologically maintained by a degree of polyclonal 
stimulation during all immune responses. 

According to [Antia et al. 2005], two possible mechanisms have been suggested to 
explain these results - Bystander Stimulation and Cross-Reactive Stimulation: 

(i) The Bystander Stimulation theory suggests that the antigen-specific T-cells pro
duce a cytokine that stimulates all nearby (bystander) memory T-cells to divide. It 
has been suggested that bystander stimulation could be responsible for the continued 
cycling of memory B-cells, as well as for T-cells [Bernasconi et al. 2002]. The results 
of this high impact work showed that if memory B-cells are simultaneously exposed 
to an antigen that they are not specific to, and to the cytokine IL-15, they will 
undergo clonal expansion. This ability was shown to be unique to memory B-cells, 
and could not be repeated with their naive equivalents. 

(ii) the Cross-Reactive Stimulation theory is based on speculation that memory 
cells could be more sensitive to stimulation than na'ive cells, and might therefore be 
stimulated by different antigens, perhaps even a self-antigen. In either case, it has 
been shown experimentally that memory T-cells specific to a particular antigen can 
be directly stimulated by a diff'erent, unrelated antigen [Selin et al. 1994]. 

Both of these theories suggest that once memory T-cells have been created, they can 
be stimulated during immune responses to unrelated antigen. The difference is that 
in one case the cells are directly stimulated by antigen, and in the other (polyclonal 
stimulation) they are stimulated by cytokines released by other, antigen-specific 
cells. 
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5.2.2 A Brief Survey of Immune Modelling 

Mathematical Models: Mathematical models of immunological (sub)systems of
ten use ordinary differential equations (ODE) or partial differential equations (PDE) 
to encapsulate their chosen dynamics (e.g. [Perelson 2002, Smith et al. 1999]). Perel-
son's HIV equations [Perelson 2002], and Smith's influenza dynamics [Smith et al. 
1999], are illustrations of models of small parts of the immune system dynamics that 
have had significant benefits to human health, but which do not set out to model the 
immune system as a whole. In Chapter 4, we have already seen Perelson's detailed 
models of B cell and T cell receptors. When one considers the chemical complexity 
of amino acid binding it is not surprising that many balk at the idea of modelling 
the immune system at all. However, immunological simulations are possible because 
we observe gross-scale effects (such as primary/secondary responses) that are then 
modulated to a greater or lesser degree by small-scale processes, such as Perelson's 
discussion of B and T cell binding. Both are vital for truly accurate models, but 
larger scale models can be used successfully to explain gross-scale features of the 
immune system [Yates et al. 2001]. 

Immunological memory has also been modelled in a similar manner— the classic 
example being Farmer et al's work [Farmer et al. 1986] - but there are more recent 
attempts to model immunological memory too [Ahmed Sz Hashish 2003]. Although 
these models say a lot about certain details, they are not intended to be global 
models of immunological memory. For example, the important work of Antia et al on 
understanding CDS'*" T-cell memory [Antia et al. 2005] is based on a few, relatively 
simple equations. This is not to say that it is easy to generate such equations (it is 
not); rather, we are saying that the applicability of these equations is limited. Indeed, 
the difficulty in building and managing these equations is precisely the reason that 
a computational simulation approach is sometimes more appropriate. 

Computational Models: Computational models are not as well established as 
mathematical models. Those that do exist are usually either population-based (en
tities that are tracked as they freely interact with each other), or cellular automata 
(entities that are tracked in a discrete grid-like structure, generally with local-only 
interactions [Wolfram 2002]). Nevertheless, computational models do have some ad
vantages over mathematical models. 

Firstly, it is possible to define, informally, the behaviour of a highly complex sys
tem, without formally defining it in terms of formal ODEs or PDEs—we can create 
a population of entities by mapping from objects in nature to objects in the com
putational simulation. Furthermore, many ODEs have no analytical solution and 
can only be solved by computational analysis, in software such as Matlab^"^ and 
Mathemat i ca l . 

Secondly, some forms of in silico experimentation may be difficult in mathematical 
models, and indeed in the immunology laboratory, such as tracking a single B-cell or 
antibody over its lifetime. It is possible, therefore, that computational immune sim
ulators will provide the only means of investigating some immunological challenges. 
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In all computational simulations, we re-iterate the importance of the choice of bind
ing mechanism, the type of cell-cell and cell-antigen interaction, (see [Garrett 2003] 
and Chapter 4 of this book), and we note that the few computational simulators 
that do exist are often underdeveloped and may not have been peer-reviewed by the 
academic community. 

ImmSim: The work of Seiden et al, on ImmSim was the first real attempt to model 
the immune system as a whole, and it is still the only simulator to have been fairly 
widely peer reviewed [Kleinstein & Seiden 2000, Kleinstein et al. 2003]. It is similar 
in style to the work of Farmer et al [Farmer et al. 1986], but is a true simulation, 
not a set of ODEs^. 

Simmune: There are at least two "SIMMUNE" immunology simulators: Meier- Scheller-
sheim's version [Meier-Schellersheim & Mack 1999], which was developed in the 
late-1990s, and Smith and Perelson's version. Of the two, Meier-Schellersheim is the 
more advanced, implemented as a full cellular automata with the ability to define 
almost any rules that the user desired, whereas Smith and Perelson's was a relatively 
simple, unpublished Lisp simulation. 

Synthetic Immune System (SIS): Although SIS appears to be significantly faster and 
more powerful, it does much less. SIMMUNE can simulate large numbers of complex 
interactions, whereas SIS is designed only to investigate self-nonself relationships. 
SIS is a cellular automata; it can only be found on the web^. 

ImmunoSim: Ubaydli and Rashbass's Immunosim set out to provide researchers 
with an "Immunological sandbox" - it was a customizable modelling environment 
that simulated cell types, receptors, ligands, cascades, eff'ects, and cell cycles, with 
experiments run in silico. A key requirement was that it should have a purely visual 
interface, with no programming necessary. It received the Fulton Roberts Immunol
ogy prize (twice) from Cambridge University but does not appear to be available as 
a publication. 

Other systems: These simulations [Castiglione et al. 2003, Jacob et al. 2004] are 
smaller scale than that proposed here, but have still had benefits to chemotherapy 
and immunology, and/or highlight problems that need to be overcome. Others have 
emphasised the importance of the binding mechanism, the type of cell-cell and cell-
antigen interaction chosen, and the multitude of other possibilities that should be 
considered [Garrett 2003]. 

5.3 Basic Simulations 

Our work with a set of Basic Simulations set out to explore the gross-scale behaviour 
of some of the theories just studied, while keeping the models as simple as possible -

'̂  ImmSim currently to be found at http://www.cs.princeton.edu/immsim/software.html 
^ at: http://www.cig.salk.edu/papers/SIS_manuaLwp_M.pdf 
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here, the only the interactions simulated are those between antibodies and antigen. 
This begs the question, "how simple can an effective model be?" Assuming Occam's 
razor applies, our answer is, "as simple as possible, and no simpler." However, the 
models described in this section are deHberately too simple. This is partly because 
no one knows how complex a simulation must be before it can accurately reproduce 
in vivo results, partly because by starting as simple as possible we get a lower limit 
on the computational performance of simple models, and partly (more importantly) 
because it lets us explore the dynamics underlying simple immune simulations, so 
that later additional complications can be viewed as modulations of this basic model. 
Note that the lack of complexity should not be seen as an indication that the models 
described in this section are trivial. Although simple, great care was taken to ensure 
they were as realistic as possible, as we hope will become clear. 

The Basic Simulations will also act as a primary validation for the underlying mech
anisms of the more complex experiments. They do not validate any other aspect 
of the complex experiments. It is easier to verify and validate the performance of a 
simple model than a complex model; then if the complex and simple models share 
similar behaviour this partially validates the complex model. This raises another 
issue: how do we validate immunological models? If we apply standard Machine 
Learning methodology, where 'models' are 'hypotheses', then we should do some 
form of /c-fold cross-validation to obtain a measure of the accuracy of the defined 
immunological hypotheses. But how do we do this when we have no well-established 
'correct' data? To some extent, we can assume that if a model is able to predict what 
will be observed in nature, then the model is validated to some extent. Indeed, the 
ability to predict is one of the reasons for building models in the first place. We will 
return to this point later. 

5.3.1 Basic Simulations: Methods and Materials 

Each Basic Simulation was built from antibodies and antigen, and no models were 
allowed to directly create memory; memory had to evolve. This blurs the distinction 
between antibodies, B-cells and T-cells in order to explore the eff'ects of immune 
cell/antibody proliferation in response to antigen. To indicate this blurring, we will 
call the simulated immune system elements 'reactive immune system elements', or 
RISEs. The RISEs were defined as being more likely to die as they got older; im
plemented by removing a RISE when rndQ.a > rndQ.dr, where rnd() is a uniform 
random number generator, a is the age of the RISE measured in generations from the 
current generation, and dr is a death rate integer, which was set to 30. A constant 
50 RISEs were added each generation. This led to a stable population size, which 
returned to the stable level despite external perturbations. Fig. 5.2 demonstrates 
this effect: despite a large influx of new RISEs (the large peak) and a small culling 
of RISEs (the small trough), stability is maintained. The size of the peaks were also 
reversed, with the same result that the population size returned to a stable level -
note also the differences in scale between Fig.s 2(a) and 2(b), which show that the 
size of perturbation is irrelevant. This implements a simple homeostatic population 
of RISEs. 
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Fig. 5.2. The resting population of B-cells was in homeostasis. These graphs show 
the population stability that underlies all models that will follow. Any positive or 
negative change to the population size is quickly corrected, and stable population 
size is restored. 

Antigen populations were 'injected' into the system as a whole, at a predefined times. 
The primary infection was always at generation 70, and the secondary infection 
was either at generation 120 ('smallGap' experiments), or generation 420 ('bigGap' 
experiments), to test the short- and long-term memory abilities of the population. 
An antigen was removed once is was bound to an RISE, and binding could only 
occur when the similarity between the RISE and antigen was within a distance of 
100. The RISEs could take any value between zero and 10,000, and the antigen 
always had a randomly chosen value of 3.3, fixed at this value for all tests. In all 
cases we assume that the strongest affinity RISE will bind with the antigen. We 
implement this by a form of tournament selection, whereby the strongest matching 
RISE of ten randomly chosen RISEs is chosen to be the one that actually binds.Our 
more complex simulation, presented later in this chapter, uses simulated chemotaxis. 

For each experiment, we measured the total number of RISEs, the total number 
of antigen, and the number of RISEs with affinity in the ranges, [0.01-0.1), [0.1-1), 
[1-10), [10-100), [100-1,000), [1,000-10,000) and [10,000-100,000). We recorded this 
information every generation for 600 generations. 

5.3.2 Basic Simulations: Experiments and Tests 

We performed the following experiments and tests. 
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Memory By External Stimulation These experiments tested the abihty of the 
Basic Simulations to remember infections over a short and long period of time, 
assuming the only stimulation to be external, i.e. via antigenic interaction: 

Control/None : On top of the homeostasis mechanism, we tested a standard imple
mentation of clonal selection. This is activated by the presence of antigen, so 
that a good-matching RISE produces many clones, and a poor-matching RISE 
produced few clones. Furthermore, the good-matching clones are only slightly 
mutated from their parent cells, via a Gaussian centred on the parent, whereas 
the few poor-matching clones are often highly mutated, relative to their parents. 
This approximates Burnet's clonal selection theory [Burnet 1959] and acts as a 
control for these experiments. Since memory cells were not explicitly created, 
we would expect the RISE population to clear the antigen, and then forget the 
infection. 

Emergent Memory : In the emergent memory tests, when a RISE was bound to 
antigen, the RISE's age was reduced in proportion to its affinity to the antigen, 
so that better-fitting RISEs tended to survive longer - this implemented the 
effects of 'preservase'. This should preserve the high matching RISEs to some 
extent, producing a form of memory. 

Residual Antigen : Once the antigen population had been injected, a single antigen 
was then re-introduced into the simulation at random time intervals (on aver
age, every three generations). Would this prevent the memory of the infection 
from being lost because this value is considerably smaller than dr? If so, under 
what conditions? It might be argued that this does not really represent resid
ual antigen, as antigen are being reintroduced rather than maintained, however 
the purpose of this model is to show whether a small amount of stimulation 
can maintain memory, not to demonstrate mechanisms by which the antigen 
could be maintained, and thus in practical terms reintroduction performs the 
same role in our model as maintenance (keeping a small, stable population of 
antigen), with the advantage of allowing us to simplify the experiment. 

Both Emergent Memory and Residual Antigen : Is there any benefit in implement
ing both the Emergent Memory and Residual Antigen theories? 

Memory B y Internal Stimulation These experiments tested the effects of adding 
internal stimulation to the Basic Simulations, so that one RISE could interact with 
another RISE, even in the absence of antigen. Although antibody-antibody inter
action is not widely thought to be a form of memory in nature, it does occur, and 
is hkely to have some function. These tests set out to suggest what that function 
might be. The graphs, described above, of affinity level distribution are of particular 
relevance to these experiments. 

It is important to note that we do not use paratope-paratope binding here: i.e. we 
do not assume that a RISE/antibody's light chain will bind with the light chain of 
another RISE/antibody, for reasons outlined in [Garrett 2003] (e.g. the problems 
of positive feedback). Instead we shift ideal binding by 2,500 (in a circular range 
of 10,000) so that a RISE with value 1,000 would bind most strongly with another 
RISE of value 3,500. This means there would need to be a cycle of four RISEs if 
internal memory were to work. This implements paratope-epitope binding, although 
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we note that there is still a functional relationship between the paratope's and the 
epitope's shape space, which is less than realistic, but was necessary to keep the 
simulation simple. 

5.3.3 Basic Simulations: Results 

Memory B y External Stimulation The results are presented in Fig. 5.3 and 
Fig. 5.4. These are averages of ten runs. Remembering that the population is com
pletely renewed on average every 30 generations, even the short gap experiments 
(left column of graphs; 50 generations between infections) should not have shown 
any memory of the previous infection. 

In the "None" graphs (top line) we actually see a slight increase in response, but 
this is not statistically meaningful - there is no memory of previous infections. The 
statistics we used were the Wilcoxon Signed Rank Test, and the results are tabulated 
in Table 5.1. This test allowed us to decide when the difference in height between 
the primary and secondary responses was significant, and the ratio expresses the 
extent of that difference. This non-parametric test was chosen because it is likely 
that the secondary response is conditioned by the primary response, and that the 
data are not normally distributed. 

The affinity graphs in Fig. 5.4 indicate there is an increase in RISEs that have 
affinities in the < 0.1, < 1.0 and < 10.0 ranges, but there is no memory between 
infections. 

The "Emergent" results show a distinct secondary response in the short gap exper
iment, because the population members that were able to successfully bind were 
preserved beyond 30 generations; however, this effect is not enough to allow mem
ory to persist over the big gap because the antibodies that were effective against 
the primary infection, tended to die over that time period. Nevertheless, the results 
indicate that memory can be preserved for at least 50 generations. 

Now the affinity graphs show that high affinity RISEs are maintained between the 
infections that are separated by a small time gap, and how these types of RISE 
drain away over the longer time gap so that the simulated immune system needs to 
begin again to find a high affinity response to the antigen. 

The "Residual Antigen" tests have a similar pattern in Fig. 5.3, with the popula
tion stimulated enough by the on-going, low-level antigen to promote a secondary 
response in the short gap experiment. In the big gap experiment, however, the effect 
is not statistically significant. 

The affinity graphs show an elevated number of high- to mid-range affinity RISEs 
(in the < 1, < 10 and < 100 ranges) but indicates the very high aflSnity RISEs 
return to lower levels by 200 generations. This explains why the secondary response 
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300 400 

Fig. 5.3. Graphs of the theory simulations, "None", "Emergent", "Residual" and 
"Both" (top to bottom, in order) for a small time gap (50 generations, left column) 
and a longer time gap (350 generations, right column), averaged over 20 runs. 
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Fig. 5.4. Graphs of the theory simulations, "None", "Emergent", "Residual" and 
"Both" (top to bottom, in order) for a small time gap (50 generations, left column) 
and a longer time gap (350 generations, right column), averaged over 20 runs. 
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was not sufficient to be statistically meaningful when the antigenic injections were 
separated by a large gap. 

With "Both" emergent and residual antigen implemented, the story is different. 
Now, we see strong secondary responses for both short and big gaps, although there 
is a slight sustained, global increase in RISE population after the first infection. 

The affinity graphs also show that the high affinity < 0.1 RISEs never returned to the 
zero mark. This appears to have been crucial in maintaining a powerful secondary 
response, and corresponds to the existence of high affinity memory cells in nature. 

Some may ask why the residual antigen phenomenon does not explain immune 
memory on its own. If the amount of residual antigen were high enough then surely 
the immune response would be enough to remember that infection? Indeed, this is 
true, but at the cost of a permanently raised antibody population level, which is not 
seen in nature. At the extreme, if the infection were to persist at the same high levels 
then it is obvious that the memory would not be lost, because the infection would 
be continuous and on-going, but this is also not a realistic state of affairs, except in 
pathological cases, such as in elderly patients who are infected with cytomegolovirus 
[Perelson 2002]. The level chosen is one that only very slightly raises the antibody 
population size: it is enough to maintain memory over a short period, but not in the 
longer term. 

Furthermore, Residual Antigen does not explain why better matching cells tend to 
survive and worse matching cells tend to die off; nor does it explain how memory 
cells can naturally emerge as a result of immune cell evolution. As a result, both 
the apoptosis reduction (or telomerase memory maintainance mechanism), and the 
re-stimulation mechanism are required to evolve an effective immune response. 

Memory By Internal Stimulation The results are presented in Fig. 5.5 and 
Fig. 5.6. For each run, each RISE attempted to bind to the RISE with the highest 
affinity out of ten randomly chosen RISEs. There does not appear to have been 
any memory effect; indeed, the opposite seems true - as soon as any subpopulation 
increased in size out of proportion to the population as a whole, the network effect 
reduced the size of that subpopulation. This made the levels in Fig. 5.6 more stable 
than the comparative graphs in Fig. 5.4. 

We conclude that the memory effects of immune networks are limited — at least 
the types of network that we have implemented here. Since our aims in these basic 
experiments are to produce simple models of immunological interactions, we use 
non-symmetric, paratope-epitope binding, in which knowing that A binds B does 
not imply B binds A. In contrast, AIS network algorithms tend to use paratope-
paratope binding because it is of interest from a computational point of view, even 
if it is less biologically tenable. 
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Experiment 

None Small Gap 

None Big Gap 

Emergent Small Gap 

Emergent Big Gap 

Residual Small Gap 

Residual Big Gap 

Both Small Gap 

Both Big Gap 

Network Small Gap 

Network Big Gap 

All Small Gap 

All Big Gap 

p-Value 

0.240 

0.955 

0.0000957 

0.225 

0.00318 

0.332 

0.0000957 

0.0000957 

0.765 

0.896 

0.0000942 

0.000315 

99% 
No 

No 

Yes 

No 

Yes 

No 

Yes 

Yes 

No 

No 

Yes 

Yes 

Ratio 

0.948 

1.011 

0.852 

1.067 

0.890 

0.945 

0.822 

0.813 

0.999 

1.001 

0.850 

0.832 

Table 5.1. Results of the Wilcoxon Signed Rank Test for difference between the 
size of the two peaks in each experiment. The p-values are shown to 3 significant 
figures and whether or not the difference can be regarded as significant at the 99% 
confidence level. The smaller the p-values the greater the degree of confidence that 
there is a difference between the primary and secondary responses, with 1.0 being 
zero confidence, and 0.0 being 100% confidence. The ratio gives the size and direction 
of the difference between the two peaks. 

5.4 Experiments Using the Sentinel System 

5.4.1 M e t h o d and M a t e r i a l s 

The simulations that form the basis of this chapter were modelled using our soft
ware, 'Sentinel'. Sentinel is an agent-based complex system simulation platform for 
immunology and AIS research that currently exists as a prototype. Its design is 
based largely around the principles of cellular automata, with the environment di
vided into a discrete grid of locations. Entities within the simulation are free to 
move around in this environment, but are only able to respond to events that occur 
within closely neighbouring cells. 'Engines', such as those used in computer games 
for managing graphics, physics, etc., manage the physical and chemical interactions 
that occur within this environment. 

The physics engine allows accurate simulation of the physical properties of agents, 
restricting their movements according to attributes such as size, mass or energy 
output. Whereas many simulations or differential equation models are exclusively 
based on cells that exhibit some form of Brownian motion, entities (cells) in Sentinel 
move according to the chemical stimuli they receive, their motor capabilities, and 
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Fig. 5.5. Graphs of the theory simulations, "Network" and "All" (top to bottom) 
for a small time gap (50 generations, left column) and a longer time gap (350 gen
erations, right column), averaged over 20 runs. 

external forces acting upon them. The physics engine ensures that movement is as 
realistic as possible, and is a novel feature of our system. 

A chemistry engine is responsible for managing chemical and biochemical reactions, 
and also the distribution of extra-cellular molecules throughout the environment. 
For example, if a cell releases a particular kind of cytokine at its location, the chem
istry engine will cause that cytokine to gradually disperse across the environment 
(see Fig. 5.7, right, for an example map of densities) by diffusion. This feature is 
essential for the accurate simulation of cell movement by chemotaxis - the process 
by which immune cells move towards higher concentrations of chemotactic factors, 
i.e. chemicals that attract them. It also enables a cell to influence a larger expanse 
of its environment than would typically be allowed in a cellular automata. 
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Fig. 5.6. Graphs of the theory simulations, "Network" and "All" (top to bottom) 
for a small time gap (50 generations, left column) and a longer time gap (350 gen
erations, right column), averaged over 20 runs. 

The implementation of chemotaxis is another novel feature of Sentinel. Cells in vivo 
are able to respond to various chemotactic molecules by detecting density gradients, 
and moving towards the highest or lowest density of that agent [Ramsay 1972]. The 
dispersal of chemotactic molecules in Sentinel is calculated by dispersing molecules 
from each location in the simulation to its neighbours over time. A cell in the sim
ulation is able to access its eight neighbouring locations to find out the densities 
there, and retrieve the highest or lowest density of a particular molecule. It can then 
use this information to move accordingly. 

Given a set of entities and chemicals (B-cells, antibodies, memory cells, cytokines, 
etc.), the influence of the physics and chemistry engines is defined by a number 
of rules. These rules define when an entity can interact with another cell, and the 
nature of that interaction; how one cell releases chemicals, or other entities, into its 
near environment, and any global features, such as blood flow that afl'ect all entities 
and chemicals. 
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Rules 

Fig. 5.7. (left) The structure of the Sentinel system, (right) Sentinel models the 
diffusion of chemicals to implement realistic chemotaxis and, crucially, to model the 
effects of cytokines (see text). The main figure shows the different concentrations of 
chemicals over a detailed view of the simulator's simulation environment. The inset 
shows the location of the detailed view in the whole space being modelled. 

Having defined the simulation model, by choosing the entities, chemicals and rules, 
the simulator is run and information is output according to user-defined data-feeds. 
These data can then be viewed in the form of various graphs and samples, or 
streamed to log files for analysis, all within the Sentinel system. It seems likely that 
this simulator architecture will be useful in other areas too, such as biochemistry 
and abstract work in genetic and evolutionary computing. 

The simulator is complemented by an Integrated Development Environment (IDE), 
that provides a set of powerful tools for the rapid development of new models. The 
drag-and-drop graphical interfaces allows the user to quickly choose sets of agents 
and establish the links between them, and to set up and connect areas of the en
vironment, and describe the rules of physics that will operate within them. A code 
editor allows users to develop Java-based extensions to these basic models, with the 
assistance of automated code-generation tools, and a comprehensive AppHcation 
Programmers Interface (API) that provides general-purpose functions for manipu
lating agents and the environment. In many respects, the system is somewhat similar 
in nature to platforms such as Robocode^, but far more powerful. 

Sentinel can simulate several million cells, hundreds of millions of antibodies, and 
their interactions, on a typical high-end desktop. Although this figure varies depend
ing upon the complexity of the model. Sentinel appears to be the most powerful 
simulator currently available, especially in view of the complex interactions that it 
is simulating. Sentinel's ability to simulate diffusion is very important - cytokine 

See http://robocode.sourceforge.net 
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signalling between cells is a vital part of immunology. Indeed, one of the following 
experiments could not have been implemented without this ability. 

5.4.2 Sentinel Experiments and Tests 

Sentinel Validation Tests: Before using Sentinel to evaluate Bernasconi et al's 
theory, we validated its performance. Both the validation and the evaluation models 
ran with of the order of 10^ B-cells. We recapitulated the "None", "Emergent" 
and "Residual" experiments, as in the previous section, but did not implement 
"Network" because it had little value for our goals here. By implementing the same 
tests as the Basic Simulations, we set out to show that Sentinel would work at least 
as well as the Basic Simulations. If the results are qualitatively the same then we 
will have demonstrated that Sentinel can reproduce previous results. Each of our 
simulations were run ten times, in order to ensure that the results were consistently 
reproduced. 

Sentinel 'Theory Evaluation' Experiment: This experiment is designed to ex
plore the veracity of Polyclonal Activation Memory, via simulation - something 
which has not been done before. We could not use our Basic Simulation tool be
cause the experiment required implementation of cytokine gradients (of IL-15), and 
needed to be performed on a much larger scale to obtain meaningful results. Only 
Sentinel could meet these requirements. 

The construction of Bernsisconi et al's model is based on the theory described in 
[Bernasconi et al. 2002]. They suggested their theories as a result of in vivo ex
periments, and claim that the experimental results provide compelling evidence for 
bystander stimulation of memory B-cell populations. The comprehensive set of re
sults published in [Bernasconi et al. 2002] will be tested against the data from our 
simulation, so our aim is to simulate the implications of Bernasconi et al's theory, 
and assess whether it could indeed be responsible for the in vivo results that they 
observed. Despite our validation efforts, the process described above is fairly limited 
and the process of parameterising any simulation is complex, therefore we can only 
safely look for qualitative similarities in between the results of Bernasconi et al and 
those produced by Sentinel. 

5.4.3 A s s u m p t i o n s 

In constructing these Sentinel models, a number of assumptions were made. These 
have been kept consistent through all the simulations conducted. 

Repertoire: Sentinel's simulation repertoire included B-cells, antibodies, antigen, as 
well as a signalling chemical. It was more complex in terms of the entities used, 
and used many orders of magnitude more antibodies, than the RISEs in the 
Basic Simulations. 
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Longer-lived memory cells: Memory B-cells live longer than their naive equivalents. 
In nature, a naiVe B-cell tends to live for about 24 hours unless it receives 
stimulus, at which point it is "rescued, and may go on to live for a few months 
[Bernasconi et al. 2002] This is reflected in our models. 

Antigen: Antigen does not reproduce or mutate during the simulation. 
SimpHfied binding: As in the basic simulations, and in order to provide the best 

possible performance, a simplified binding mechanism was used. A strain of 
antigen is given a number between 0 and 20,000, which remains constant across 
the population. Every new B-cell is assigned a random number within that 
range, and the binding success is measured as the distance between the two 
numbers. 

Clonal selection: In response to antigen, B-cells undergo clonal selection and hyper-
mutation, as described by Burnet's 1959 theory. [Burnet 1959]. Cells that have 
been cloned retain the binding integer value (see previous bullet point) of their 
parent, mutated in inverse proportion to its binding strength. 

Simplified Immune Repertoire: The simulation consists of B-cells, antibodies and 
antigen, plus one signalling cytokine. B-cell T-cell interaction is not simulated 
in these tests, but are planned (see Further Work). We needed to keep the 
model as similar to our previous system as possible (no plasma cells) to make 
the validation process as meaningful as possible. 

5.4.4 Sentinel Results 

Sentinel's Validation Results 

The results in Fig. 5.8 show that Sentinel correctly produces a secondary response 
to a repeat infection of the same antigen, for both memory theories. Furthermore, 
Sentinel's results show that the Residual Antigen model maintained a considerably 
higher population of memory cells and antibodies - down to only about 10^ anti
bodies before second infection, compared to of the order of 10^ for the other memory 
models. This relates to the Basic Simulations that showed the residual antigen pop
ulations had more antibodies. 

In both simulators, the models of the Emergent, 'preserveron' theories sustained 
good short-term memory, and in both simulators we observed the memories stored 
in this manner failing when the cells carrying them died. Unless we accept that the 
primary immune response produces memory cells that live for years, such models 
will always result in an immune memory that fades over time. 

The model of the Residual Antigen theory sustained a stable level of memory cells in 
both simulators, and was able to produce a substantial secondary response regardless 
of the length of time between the first infection and subsequent re-infection. It 
appears to be a viable model of immune memory; however, the requirements to 
sustain such a system seem unlikely to be met in nature because the immune system 
would have to produce such material over a highly extended period. Indeed this point 
was debated several years ago [Matzinger 1994a]. 
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Fig. 5.8. Validation graphs for the number of cells over arbitrary time for: (i) the 
Emergent/'Preserveron' model, and (ii) the Residual Antigen model. Antigen A is 
injected at t=3000, and t==13,000. 

Although there are some differences in the details, such as the more pronounced 
secondary peak in the secondary response, we consider the two simulators similar 
enough to proceed with the qualitative comparison of the in vivo and in silico results. 

One advantage of Sentinel is that we can now distinguish between the secondary 
responses from the various theories: (i) the 'Preservon' model has a wide response, 
but it does not lead to as many antibodies being created, and the after-response is 
small, and (ii) the Residual Antigen model has a sharp, medium height secondary 
response, with a much extended, exponentially decreasing after-response. 

Our previous experiments were too coarse-grained to provide results that had mean
ingful differences, and the curves they produced were an almost perfect exponential 
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followed by a slower, almost perfect exponential decrease. Interestingly, there is a 
slight 'wobble' at the end of the exponential decrease, which is also consistent with 
the after response we see in the graphs of Fig. 5.8. These experiments show that we 
can reproduce the results of the Basic simulations, but with finer resolution. 

Sentinel's 'Theory Evaluation' Results 

Since we stated in the 'Experiments and Tests' subsection that we have not validated 
the finer-grained elements of Sentinel's results, we will compare the results, in a 
qualitative way. Fig. 5.9 shows two plots from Sentinel - each for different model 
parameters - and a presentation of the graph from [Bernasconi et al. 2002]. 

Note that the Anti-A plot, caused by re-injected Antigen A, in (top) and (middle) 
has a shallower peak than the plot of Anti-TT in the bottom plot. The parameter 
values for the (top) graph yield poor results, but in (middle) are better, assuming 
we use the section of graph from time index one to five. The need to find good 
parameters is discussed in the Further Work section below. Both parameter choices 
result in some features of the Bernasconi et al plot but the relative increases seem 
to indicate that here is some degree of match between the simulated (middle) and 
in vivo (bottom) results. 

Although not perfectly confirmed, a simulation of Bernasconi et al's theory has 
been shown to be qualitatively reasonable, relative to the in vivo measurements. 
But what causes the quantitative differences? The disparities may be due to: (i) 
incorrect modelling of the Bernasconi et al theory; (ii) lack of detail in the model; (iii) 
incorrect parameterisation of that model, and/or (iv) a fundamentally faulty theory 
underlying the model. The next step is to isolate the cause of disparity. The first and 
last of these points can be addressed by opening a dialogue with Bernasconi's group, 
but points (ii) and (iii) will require significant further work, as described below. 

In conclusion, the simulated theory of polyclonal activation produced interesting 
results, similar to those obtained by residual antigen theory, but without requiring a 
long-lived supply of antigen. The signalling provided by IL-15 seems to be essential 
for this phenomenon. It appears consistent with nature's efficient ways that the body 
would use the constant attack by antigen to strengthen itself, and we have demon
strated a polyclonal memory effect that is qualitatively similar to the experimental 
observations of [Bernasconi et al. 2002]. 

5.5 Further Work 

The logical extension of our basic model of polyclonal memory is to create a more 
detailed B-cell/T-cell and APC model, and then to use that as the basis for a 
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Fig. 5.9. (top and middle) Plots of the memory cell-levels per volume for two 
antigens, A and B, which are too dissimilar to directly cause a response in each 
other's memory cells. The immune system has already been exposed to both Antigen 
A and B; Antigen A is re-introduced at t=0. (top) and (middle) are for two different 
model parameterisations (see text). Both cases show an unexpected increase in the 
memory cells that are specific to the non-injected antigen. Since plasma cells levels 
are roughly linear, relative to memory cell levels, the in silico results are qualitatively 
consistent with the in vivo Bernasconi's results (bottom). 
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combined model attempting to simulate the latest theories of both B- and T-cell 
memory. Once such a model has been implemented, we can begin to explore questions 
specifically surrounding the relationship between B- and T-lymphocyte memory, and 
look at new rules for plasma cell and memory cell creation, death and homeostasis. 

As mentioned above, the level of detail of a simulation should be as simple as pos
sible, but a simulation that is too simple will not be as effective. This is a standard 
dilemma of machine learning hypothesis generation, and we intend to address this 
issue by means of automatic feedback. In other words, we will generate a population 
of simulations, and then evolve them to find the simplest, most effective candidate 
model. 

The choice of parameters for any model is known to be a hard problem [Ljung 1999], 
but creation of the model is much harder [King et al. 2005]. We are examining several 
methods of assisted parameterisation of the models, so that a 'best-fit' can be found 
by Sentinel. This will allow the research to focus on the scientifically interesting 
model-building task, rather than the more mechanical parameterisation task, and 
will help to remove four of the possibilities for the differences in between the in silico 
and in vivo results in the previous section. 

One of our long-term goals is to produce an integrated model of immunological mem
ory that explains the experimental evidence used to support many of, if not all, the 
theories explored here. Such a model could be used to explore more detailed issues in 
immunological memory, such as the unusual effects of the SAP gene (which controls 
long-term memory, but has no effect on short-term memory) [Grotty et al. 2003]. 
Furthermore, a general theory of immunological memory would have implications 
for machine learning. 

The applications described here are mostly related to immunology, and indeed that 
is the main focus of our work. Nonetheless, our Sentinel platform is likely to be 
useful in AIS endeavours in the future, in particular when it comes to understand
ing the dynamics of AIS algorithms that are based on complex systems of agents. 
In addition, simulating theories from immunology that have yet to be adapted by 
AIS researchers can provide assistance in determining the minimum set of features 
required in developing an abstract representation of an immune mechanism. 

As Sentinel continues to develop, and becomes ever more sophisticated, we will be 
able to develop larger, more complex models than at present. It will be interesting 
to see if the increase in complexity is important, or whether there is a level of 
complexity that is sufficient for the majority of immunological research. 
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Summary. For host survival, the immune system (IS) is required to deliver high-
level, specific and continuous performance, dealing with a very complex universe 
of stimuli and functions, as well as physical and resource constraints. From this 
perspective, the immune system needs an effective strategy to assure the requested 
operational functions, to survive and to evolve. The concept of degeneracy discussed 
in this chapter, is the ability of some immune receptors to bind many types of 
ligands and it would appear to be a fundamental characteristic for immune system 
functioning as well as a formidable weapon in the architecture of complex biological 
structures and systems. In this chapter, we will discuss how degeneracy acts as a 
strategy to optimize the necessary trade-off between the inescapable promiscuity of 
receptors and ligands, with the necessity to produce a specific response, and how 
the degeneracy principle acts to set up a memory of each immunological event, thus 
contributing to the fitness of the organism, and how degeneracy can be considered 
among the underlying causes for the evolution and robustness of the IS. 

6.1 Introduction 

In observing complex systems, one can notice how the capability to exploit struc
tures and units in a variable mode often acts out as origin for their behavior and 
functioning. It appears that players within such systems have the possibility to 
differently interpret the input signals, and consequently to respond in a "ambigu
ous" manner, that give rise to very different paths and to emergent behavior: this 
is typical of a complex systems' performance. In the immune system (IS), signaling 
molecules, cells and organs form an intricate and highly reacting network, and show, 
at different levels, all the traits that characterize complexity such as non-linear out
comes, feedback loops, the significance of system's early history, the difficulty to 



n o Tied et al. 

define boundaries. Degeneracy, in this context, is the abihty of an immune receptor 
to bind many different ligands. It appears to be another piece in the puzzle that is 
the chain of nested and interconnected subsystems which compose the whole IS. In 
this view, degeneracy can be seen as a further complication to the global picture, 
but at the same time its concept can help to explain the evolution of the IS, as well 
as many of the immune system operational capabilities. 

6.2 The Evolution of the Immune System 

The immune system is devoted to the neutralization of a variety of agents, including 
bacteria, viruses, and parasites, which can cause infectious diseases and threaten the 
survival of the organism (see Chapter 1 for an overview of the immune system). 

Within this perspective, the main selective forces for the immune system has been 
the capability to counteract infections and in particular acute infections, that were 
likely the most common cause of death of our ancestors. 

Immune responses are tightly connected to inflammation, i.e. the first and complex 
response which occurs at tissue and organ levels in order to get rid of infectious 
and damaging agents. Indeed, since the beginning, immune responses have always 
been involved in the responsiveness to other damaging agents besides infectious 
pathogens. 

In fact, a large variety of data obtained from invertebrates has led to the concept 
that immune and stress responses, and inflammation, are part of an integrated and 
complex response, which is fundamental for survival in invertebrates. Additionally, 
it appears these processes were integrated with the newly emerging clonotypic im
munity. Thus, the vertebrate evolving immune system had to face the problem to 
merge and harmonize a completely new cellular and organ apparatus within an old 
and stabilized system as that typical of invertebrates. Within this scenario, the first 
problem that such an immune system had to solve was to find an effective and eco
nomic way to recognise the enormous variety of molecular configurations present in 
the universe of potentially infectious agents. 

In the last 15 years it has become clear that a limited number of peculiar types of 
receptors called Toll-like receptors (TLRs) are responsible for sensing the so-called 
"pathogen-associated molecular patterns" (PAMPs) [Schnare et al. 2001] and/or 
providing the "danger signal" as speculated by [Medzhitov & Janeway 2002] and 
[Matzinger 2002], respectively. This result is quite remarkable since it shows that a 
first degree of discrimination exists between infectious non-self and non-infectious 
self and is solved in a very economic way. Furthermore, recent data also suggests that 
the mechanisms of TLRs-based sensing relies on a synergistic interaction between 
diverse TLR types that cooperate with each other in dendritic cells (DCs) activation. 
In fact, each type of TLR is capable of binding a quite specific molecular pattern 
(e.g. TLRS is triggered by double-stranded RNA, TLR4 by lypopolysaccharide -
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LPS- etc.) and it seems clear that certain binary combinations of T L U S act in 
a synergistic way when simultaneously triggered. This results in the initiation of 
different pathways and drives different DC activation, each of which is followed by 
a peculiar immune cell response. Combinatorial TLR stimulation may in this way 
ensure tailored responses of specific-amplitude. For more information on the innate 
immune system and its interplay with the adaptive,see the chapter by Robins in this 
book (Chapter 1). 

6.3 The Universally Degenerated Sensing of the Immune 
System 

TLRs elucidate the concept of degeneracy which was originally proposed to describe 
the capability of a single immunoglobulin (Ig) to bind a variety of peptides {one-
to-many rule). This concept was later applied to the T cell receptors (TCRs) and 
Major HistocompatibiHty Complex (MHC) molecules, i.e. the main sensors of the 
clonotypic IS. 

As discussed in Chapter 7 by Andrews and Timmis, degeneracy seems to be an 
imperative weapon in biological systems, having to deal with a very complex universe 
of functions and physical and resource saving constraints. Thus, degeneracy could 
be considered the stratagem found to optimize the necessary trade off function. As 
an example, it has been argued that, assuming for a mouse a stringent one-to-one 
specificity of TCRs toward ligands, the weight of the T cells necessary to perform 
such a task would be 70 times higher of the entire weight of the mouse [Mason 1998]. 
The same considerations apply to MHC molecules, which perform the crucial steps 
of presenting epitopes within the groove of Class I and Class II molecules to CD8-I-
and CD4+ T cells, respectively. It is well known that the limited number of MHC 
variants have the capability to bind the entire set of short epitopes derived from the 
self repertoire as well as from the repertoire of foreign proteins of whatever origin 
[Mason 2001]. 

On this basis we can assume that all the sensor molecules of both innate and clono
typic immunity utilised by the immune system to recognize antigens are charac
terized by an intrinsic degeneracy which appears to be a structural feature of this 
category of molecules. The main message from a systemic point of view is that the 
old one-to-one rule originally hypothesised by Alric and Burnet, to quote only some 
of the major theoreticians, is far from being true[Burnet 1959]. On the contrary, it 
appears that the only way that the immune system has to recognise the full reper
toire of molecules which threaten the body, and requires the triggering of an immune 
response in order to neutralise them and let the body survive, is to exploit the per
vasive characteristic of biological systems that has been called degeneracy [Cohen 
et aL 2004]. 
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6.3.1 Main Requirements of Degeneracy 

The conclusion of the previous section is not unexpected, since degeneracy is ap
parently an ubiquitous property of biological systems at all levels of organization. 
According to [Edelman Sz Gaily 2001], degeneracy is 

"the ability of elements that are structurally different to perform the same function 
or yield the same output", 

and its main characteristic [Edelman Sz Gaily 2001] is that it implies 

"structurally different elements, and may yield the same or different functions de
pending on the context in which it is expressed". 

This concept is opposed to redundancy, in which the same function is performed by 
identical elements. 

This exactly reflects the situation of the immune system and particularly of its 
adaptive branch, where each T and B cell mounts a molecularly unique receptor 
(TOR and BCR -or Ig-, respectively), characterised by large degeneracy despite 
their clonotypic distribution. In other words, these cells, in which apparently the 
immune system was able to achieve the maximum level of individual specificity, are 
capable of binding a large spectrum of epitopes and constitute, when considered 
with neurons as a whole, one of the most degenerated systems of the body. In the 
same way, dendritic cells, in which TLR are not clonotypically distributed but are 
concomitantly present on the same cells, not only exploit a degeneracy strategy but 
also a joint and cooperative action. Indeed, the capability of a single TLR to bind 
a variety of ligands, is joined with the above mentioned ability to integrate binding 
signals from different TLRs (to initiate diverse signalling pathways and tailored 
immune responses). 

Thus, the immune system can be conceptualised as a system composed of a very 
large number of elements which fulfil requirements of the degeneracy. It is composed 
of components which create either structurally different receptors (T and B cells) 
which are able to bind very different epitopes, or degenerated receptors capable of 
a functional cooperativity between their signalling pathways (DCs). In all cases, 
the context becomes prominent as far as the outcome is concerned, i.e. the type 
and strength of the response. Context in this case is everything that can be sensed 
by immune cells. In DCs, the context is represented by the simultaneous presence 
and binding of different ligands to TLRs which in turn leads to a cooperative tran
scriptional regulation of target genes that act in concert to give rise to the immune 
response. In the case of T and B cells, the simultaneous binding of different ligands 
to co-receptors with inhibitory or activatory function constitutes the context where 
is situated the binding of possibly different epitopes (with different affinity) to the 
TCR or Ig [Mason 1998, Hiemstra et al 2000]. 
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6.3.2 Degeneracy and Evolution 

The relationship between degeneracy and evolution is quite complex. [Edelman &; 
Gaily 2001] have suggested that 

"degeneracy is not a property simply selected by evolution, but rather is a prereq
uisite for, and an inescapable product of, the process of natural selection itself". 

Thus it is conceivable that starting from a low, inescapable level of degeneracy of 
simple forms of life, evolution progressively selected organisms where the degener
acy of biological networks was increased, thus allowing more complex performance 
[James & Tawfik 2003]. 

It is remarkable that this process utilised the same basic building blocks i.e. genes 
and proteins. Indeed the number of genes in animals like Caenorhabditis elegans, 
constituted by a little more than one thousand cells, and Homo sapiens, constituted 
by an astronomically higher number of cells, is of the same order of magnitude. As 
humans are definitively and undoubtedly more complex than C. elegans, it is possible 
to speculate that complexity is, rather than an increased number of elements, the 
result of an increasing number of interactions among them at all levels of biological 
organizations and networks, from proteins and genes, to cells and organs. Within this 
scenario, an initial degeneracy was the substrate and the target of natural selection 
for a progressively increased level of degeneracy and complexity. Thus, the more 
complex organisms and systems are, the higher their own level of degeneracy. This 
conclusion is quite counterintuitive to the traditional point of view, according to 
which degeneracy should be avoided in order to have solid and efficient machineries 
and structures. 

Further studies in different model systems regarding different level of biological 
organization are thus needed in order to validate the hypothesis that an increased 
degeneracy is favoured by evolution. How can such a high level of degeneracy in the 
most complex animals and biological systems be reconsidered with their capability 
to perform specific tasks in a very efficient way? How is it possible to envisage 
degeneracy as the unavoidable background of the highest performances characteristic 
of immune system and nervous system? In immunological terms, how is it possible to 
explain the specificity of the immune response on this background of a degenerated 
interactions between ligands and receptors, and different cell types? 

An increased level of degeneracy is often accompanied by a concomitant increase in 
complexity of spatial and temporal constraints. We can speculate that an increased 
sophistication in cellular compartmentalisation and anatomical topology represent 
the major constraints which allows the intrinsic degeneracy of the immune system 
and other systems like the NS to be effective and to decrease the number of ineffective 
interactions. As far as the immune system is concerned, the increase in degeneracy 
along with complexity in evolutionary terms must be envisaged as a process involving 
the anatomical remodelling as well as the emergence of new sophisticated anatomical 
sites and organs such as germinal centres and the thymus. The other strategy which 
allowed the emergence of specificity from this soup of degenerated interactions is 
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the above mentioned capacity of immune cells such as DCs and T and B cells to 
integrate the variety of signals they are exposed to in their specific (anatomical) 
context. 

The coevolution of receptors and ligands implies degeneracy, once given the presence 
of multiple "multi-purpose" structures and not of one-to-one matches: in such envi
ronment, evolution takes into account the multiplicity of players and the necessary 
degeneracy. In this sense, each player is necessary, and none is redundant but has 
its own essentiality, especially in a long term view, since each unit can contribute to 
an unforeseen function or can improve an existing process or metabolic pathway. 

In general terms we can speculate that the force of natural selection has favoured 
the emergence of sets of genes, proteins, receptors with high degree of degeneracy, 
i.e. the emergence of pathways and functions which rely upon a variety of elements 
which can structurally slightly differ from each other. Hence, when necessary and 
despite performing non identical functions, these elements are capable of swapping 
and replacing each other. Natural selection probably shaped not a single element 
{one-to-one rule) but rather the entire set of interacting degenerated players. This 
means that degeneracy overlaps among context. 

6.3.3 Degeneracy and Context 

Degeneracy increases the connectivity capability of players in biological and im
munological networks. Connectivity and the ability to communicate increase and 
stimulate the capacity of the integration of signals and their consequent interpreta
tion. Recently it has been recognised that not only individual immune cells contin
uously integrate antigenic and other signals, but also that both individual cells and 
populations of cells respond to the rate of change in the level of stimulation, being 
capable of discriminating the magnitude of system perturbations. In other words 
both at the individual cell level and at cell population level the main systemic char
acteristic of the immune system is its capability to sense the rate of change in the 
level of stimulation (the temporal derivative of stimulation). 

From this perspective the antigen, i.e. the stimulus capable of triggering an immune 
response can be defined as any given perturbation whose parameters vary at a rate 
above a certain threshold. We summarize that danger signals from this point of view 
are all those signals which perturb abruptly the context in which immune cells are 
immerged. Such a systemic point of view indicates that a proper definition of antigen 
cannot avoid a concomitant proper definition of the context and indicates that it 
could be more appropriate to define the "antigen" as a context-sensitive stimulus 
rather than a stimulus as such. In some extreme cases, the importance of the context 
can be so overwhelming that an immune response can be obtained in the absence of 
the antigen [Selin et al 2004]. 
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6.3.4 Degeneracy and Robustness 

From an engineering point of view, it could be argued that for a system to be robust, 
any type of degeneracy as described here should be avoided. Typically, engineering 
solutions make use of the typical one-to-one (one structure-one function) rule and 
relies heavily on redundancy. In this context, redundancy means that whenever the 
critical persistence of a specific performance is required, there is a multiplication 
of identical structures, which perform the same function, to cover a failure of one 
of the structures. From the same view, when the optimisation of functions and 
structures is the primary goal, then the possibility that one structure could perform 
different concomitant functions is "disturbing" or not tractable at all (with classical 
engineering methodologies and approach). 

On the contrary, optimisation in living organisms seems not to be tailored only for 
short-term objectives, but also for out-of-sight and unpredictable long-term goals. 
Many biological functions are based on flexible and degenerate interactions among 
elements, which slightly differ structurally in a way which can be quite subtle. Such 
a structural diversification results in large repertoires of scarcely dissimilar elements 
capable of a multitude of interactions dynamically varying in space and time as 
well as for their strength and duration. These characteristics are quite similar to 
those required by a robust system (a system able to maintain a feature in the face 
of perturbations), and thus degeneracy can be taken as a major ingredient of bi
ological robustness, for the best adaptation to environments and contexts. In this 
case robustness and plasticity are both achieved by systems with high degrees of de
generacy. Moreover, degeneracy allows new combinations of interactions in different 
frameworks allowing adaptation over ontogenetic and phylogenetic times (at a so
matic level and increasing fitness from generation to generation) [Wagner 2005, Jen 
2001, Krakauer 2001, Carlson & Doyle 2001]. Indeed, this notion of degeneracy in 
Artificial Immune Systems is explored in greater depth by Andrews and Timmis 
(Chapter 7 of this book). 

6.3.5 Integral degeneracy 

There is experimental evidence of the importance of degeneracy in ruling the shape, 
the functioning and the evolvability of systems in the real biological world. At a 
cellular scale, in the integration of signals with different intensity from different sen
sors, at the cell population scale, in the behaviour of interacting immune cells, and a 
higher-level scale in the systemic interactions among major body structures resulting 
in a highly integrated immuno-neuro-endocrine system. In the T cell antigen recog
nition and response, the first level of TCR degeneracy is integrated with a second 
level of degeneracy given by the combination of the activation state of the APC pre
senting accessory signals. The activation state of an APC can significantly vary and 
relies on the identification of dsRNA, PAMPs or LPS by its set of non-clonal recep
tors (TLRs). Hence, antigen presentation by not fully activated APCs can result in 
T cell anergy or apoptosis, or instead, interaction between a completely mature APC 
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and a pre-activated T cell can lead to a full-blown attack. Furthermore, it has been 
demonstrated that self-recognition by TCRs happens very often in standard phys
iological conditions and -in specific immunological spaces like secondary lymphoid 
tissues- lowers the activation thresholds for alien antigen responsivity [Kamradt &: 
Volkmer-Engert 2004]. 

In the same way at the cellular interaction level, the multiplicity of immune medi
ators exchanged by immune cells leads to a network of interactions that strongly 
influences the reliability of the immune system and that significantly contribute to 
its robustness and adaptability. One of the studies on immune cells network topology 
[Tieri et al. 2005] shows how each cell can exploit a variety of mediators as signals in 
an information flux exchanged with another cell. Some of these mediators, each in 
their chemical and structural dissimilarity, can sometimes carry the same informa
tion signal: this is evidence of the result from an adaptation of different structures 
to similar functions. 

6.4 A Model: Network Dynamics with Adaptive 
Degeneracy 

The concept of degeneracy leads, in a natural way, to a class of network models 
where the selectivity/specificity properties can be relaxed from the maximum se
lectivity/specificity principle (one-to-one rule) to a more realistic one that allows 
the possibility to have various degrees of selectivity/specificity: in other words, a 
certain degree of degeneracy. The degree of degeneracy can be tuned by a "plas
ticity threshold" that depends in a non-linear way from the past history of the 
input-output environment that each network's element have experienced. 

As discussed in Chapter 7 of this book, the immune system is a cognitive system, 
capable of recognition and action. The cognitive capability (learning and memory) 
in neural as well as immune system is influenced by a signalling system, the so 
called Kinase-Phosphatase (K-P) network. Among the various proteins involved in 
K-P network, Calmodulin-Dependent Protein Kinase II (CaMKII) and Calcineurin 
play a pivotal role during the memory induction in immune and neural system. 
Memory induction in neural system has been deeply investigated, and it has been 
divided into two elementary mechanisms. Long-term Potentiation (LTP) and De-
potentiation (LTD), as postulated in Bienenstock-Cooper-Munro (BCM) theory of 
synaptic plasticity [Bienenstock et al. 1982]. These mechanisms are implemented 
through an energy-based learning rule [Bazzani et al. 2003], where the connections 
updating is obtained by minimization of a "risk" or "energy function" [Bazzani et 
al. 2003, Castellani et al. 1999]. This theory is based on the so-called "maximum 
selectivity principle", or in other words a one-to-one association between input and 
output without any degeneracy. We already established a mapping between neural 
and immune system mechanisms of memory induction [Remondini et al. 2003], both 
in maximum selectivity conditions and in case of degeneracy, that represents the 
possibility of recognizing more than one stimulus. 
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Within this framework, generic lymphocytes are the units of a network, and they 
communicate through mediators represented by the Hnks between nodes (in analogy 
with synaptic connections in neurons). Each unit is specified by its inputs, outputs 
and an internal parameter: a history dependent threshold. This threshold depends 
on the time average of incoming and outgoing signals and maps the history of each 
lymphocyte to a plasticity function. The "plasticity" function ^ is responsible for the 
strengthening and weakening of communication efficiency between nodes (analogous 
to LTP and LTD). The definition of ^ is chosen according to statistical considera
tions and mathematical simplicity, but the general results are true for a wide class of 
changing sign functions [Castellani et al. 2005, Castellani et al. 2001]. The evolution 
equations are: 

2) ^ij = Uij • (uij -Oij) i ^ j =^l,...n 

3) Oij= E < • 

where Uij are the mediators concentration values and f2ij are appropriate subsets of 
input and output links. The choice of the Qij subsets is crucial, since the development 
of diff*erent network structures critically depends on this choice. It is possible to 
show that according to the choice of Oij we have various degree of degeneracy: 
lymphocytes can respond to a single antigen or to a number of antigens in relation 
to such value. This choice also determines the resulting network topology: the degree 
distribution (number of links of each node) can range from a quasi-random (not 
structured) to more fat-tailed distributions that reflect a hierarchical ordering of 
nodes. The possibility to have a non-one-to-one mapping between inputs (antigens 
or external signals) strongly increases the network capacity in terms of number of 
stable states [Castellani et al. 1998]. 

This is a first step towards more realistic immune models taking into account the 
internal structure [Tieri et al. 2005, Castellani et al. 2005] of cell communication 
and the role of signalling molecules in the induction of learning and memory and 
response to stressor signals. A possible algorithm inspired by this plasticity theory 
may be an agent-based model. Each agent communicates with a variable number of 
other agents, and adjusts its internal parameters (the O threshold and the number 
of its connections) on the basis of a threshold-based "weighting" of the incoming 
and outcoming signals (risk function minimization). 

6.5 Conclusion 

Evolution and degeneracy seem tightly linked, and furthermore, it is likely that 
degeneracy acts as a prerequisite for evolution. Indeed, the degeneracy principle 
itself, i.e. the flexibility in using the same structure for different tasks, contributes 
to the breakthrough of functions not foreseen ab origine in the system's abilities. 
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Experimental evidence now shows that immune system basic functioning reHes on 
degeneracy of its receptors, since an exact one-to-one match principle would not be 
cost-effective and is unlikely to work at all. Degeneracy principle appears to pervade 
the system at many level of integration, from molecular to intercellular interaction, 
to main body systems communication. Further studies in this direction would allow 
us to elucidate how deep the degeneracy principle is nested in the system machinery. 
Degeneracy can also be considered as a form of robustness, since it assures continuous 
working conditions, with the unavoidable drawback of performance decrease. 

To add a note on the terminology, the term "degeneracy", referred to the capacity 
of a single receptor to bind many different ligands, seems to come out from the 
misconstrued idea of absolute "fidelity bond" between receptor and ligand. Since 
this hypothesis appears now to be unrealistic, one can use the term "polygamy" 
instead of "degeneracy", taking into account the fact that "multiple mating" seems 
to be the natural condition of such a receptor. 

It can be finally argued that the intrinsic nature of evolutionary success of such 
systems, and organisms, relies upon the reduction of system performance that should 
anyway remain secured to a minimal level, and on despecialization. 
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Summary. In this chapter, we highlight the idea that actively investigating alter
native theories of the immune system can identify new and novel inspiration for 
artificial immune systems (AIS). It is clear that there is disagreement amongst im-
munologists concerning many mechanisms of the immune system, often providing an 
unclear picture for the engineer trying to exploit immune ideas. In spite of this, the 
abundence of immune theories can be beneficial to the AIS practioner if investigated 
in detail. Here we provide an example of this by describing Irun Cohen's cognitive 
immune model and showing how, from this, new ideas for AIS inspiraction can be 
identified and exploited. 

7.1 Introduction 

As discussed in Chapter 3, early artificial immune systems (AIS) were developed 
with an interdisciplinary slant. A notable example was [Bersini 1991] where they 
developed immune network models, and then applied those models to a control 
problem characterised by a discrete state vector in a state space. Other examples 
include the development of immune gene libraries leading to a bone marrow algo
rithm employed in AIS [Hightower et al. 1995], and the development of the negative 
selection algorithm with the first application to computer security [Forrest et al. 
1994]. However, in more recent years, work on AIS has drifted away from the more 
biologically-appealing models and attention to biological detail, with a focus on more 
engineering-oriented approach. 
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This drift away from biological detail has led to systems that are examples of rea
soning by metaphor [Stepney et al. 2004]. These include simple models of clonal 
selection, immune networks and negative selection algorithms as outlined in Chap
ter 3 in this book. For example, the clonal selection algorithm (CLONALG), whilst 
intuitively appealing, lacks any notion of interaction between B cells and T cells, 
MHC or cytokines. In addition, the large number of parameters associated with the 
algorithm, whilst well understood, make the algorithm less appealing from a com
putational perspective. aiNet, again, whilst somewhat affective, does not employ the 
immune network theory to a great extent. Only suppression between B-cells is em
ployed, whereas in the immune network theory, there is suppression and stimulation 
between cells. More recent studies in [Hart & Ross 2004], point out that the main 
effect on immune network algorithms may well be the way in which interaction is 
defined. Through the development of a simple model Hart and Ross demonstrate 
the evolution of various immune network structures which are considerably affected 
by the choice of affinity measure between two B cells, which in turn effects how B 
cells interact with each other. With regards to negative selection, the simple random 
search strategy employed, combined with using a binary representation, makes the 
algorithm computational so expensive, that it is almost unusable in a real world 
setting [Stibor et al. 2004, Stibor et al. 2005a]. 

In order to attempt to draw back the eyes of the AIS practitioner, away from the 
well known immunology (at least to the AIS practitioner), in this chapter we first 
examine the disagreements amongst many immunologists trying to explain how the 
immune system works. Following on from this, we highlight one point of view, that of 
Irun Cohen, which dscribes the immune system as a cognitive system [Cohen 2000a], 
and investigate how this might be a useful exploration for the AIS practitioner. As 
with the chapter by Neal (Chapter 14 in this book), we argue that the simplicity 
that has been adopted thus far in the development of AIS, has potentially limited its 
scope. Neal discusses the role of interactions in the immune system, both internal 
(between innate and adaptive), and external forces. Here we focus on the role of 
degeneracy of immune receptors (highlighted by Neal, and by Tieri et al. in Chapter 
6) in the context of Cohen's cognitive model, and suggest ways in which this may 
be exploited in future applications. 

7.2 Immunological Arguments 

By investigating the immunological research literature, it is clear that many immu
nologists fundamentally disagree on the immune mechanisms responsible for many 
of the key observed properties of the immune system. This disagreement gives rise to 
many different theories of immune function, yet any of these theories may be useful 
for inspiring AIS. In this section, an example is given on one such disagreement doc
umented in an immunology journal, and it is shown that much of the disagreement 
arises from a clash of research methodologies being employed. 
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7.2.1 Immunology: The Science of Self—Non-Self Discrimination? 

The formulation of the clonal selection theory gave to immunology an explicit notion 
of an immune self and a mechanism by which the adaptive immune system could 
discriminate between self and non-self molecules in the body. With the adoption 
of the clonal selection theory as the key principle of adaptive immunity, [Tauber 
2000] notes that by the 1970s, the immune self had became the defining idea in 
immunology with the field itself being referred to as the science of self-non-self dis
crimination. Indeed, it is still a hotly debated topic, see Chapter 17 of this book 
for more detail regarding this matter. It appears evident, however, from articles 
appearing in volume 12 issue 3 of the journal Seminars in Immunology published 
in 2000 ([Anderson & Matzinger 2000b, Bretscher 2000, Cohen 2000a, Grossman & 
Paul 2000, Langman & Cohn 2000c, Medzhitov & Janeway 2000, Tauber 2000, Sil-
verstein &: Rose 2000]), that this view is not universely held. In this journal volume, 
many leading immunologists discuss their views on the nature and importance of 
self-non-self discrimination in the immune system. In their editorial introduction, 
[Langman & Cohn 2000a] state that this is the first time a large collection of com
peting immune theories have attempted to be published together. 

On examination of the articles presented in the journal issue, the level to which many 
immunologists diff*er in their views becomes clear. This is summed up by [Langman 
& Cohn 2000b], who state in their editorial summary: 

"There is an obvious and dangerous potential for the immune system to 
kill its host; but it is equally obvious that the best minds in immunology 
are far from agreement on how the immune system manages to avoid this 
problem." 

In his commentary on the models proposed by the other immunologists, [Tauber 
2000] believes that they all fall to various degrees between the ideas of Burnet (clonal 
selection theory) and Jerne (immune network theory), and are thus a continuation 
of the arguments between these two points of view. 

Of the immune models presented in the journal issue, Langman and Cohn's own 
minimal model of self-non-self discrimination [Langman & Cohn 2000c] is the one 
closest to the original ideas of Burnet, whereas [Cohen 2000a] is the closest to Jerne's. 
Langman and Cohn's model considers only the adaptive immune cells to be involved 
in the recognition of non-self antigen, and thus the initiation of the immune response, 
in the body. Conversely, Cohen's model removes the requirement for self-non-self 
discrimination in the immune system. In this model all immune cells recognise both 
self and non-self antigens and form an immune dialogue with the body's tissues in 
order to fulfil the role of body maintenance. The [Bretscher 2000] model is very sim
ilar to that of Langman and Cohn, but tries to reconcile the original ideas of Burnet 
with contemporary immunological observations. It does this by including the role of 
innate immune cells acting as antigen presenting cells (APCs) during the initiation 
of an immune response. The models presented by [Medzhitov Sz Janeway 2000] and 
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[Anderson & Matzinger 2000b] are essentially the infectious-non-self model and dan
ger theory respectively. The model proposed in [Grossman &: Paul 2000] is closest to 
that of Cohen's, in which lymphocytes react to the rate of change in excitatory sig
nals. They do this by constantly tuning their activation thresholds, only responding 
when they can no longer adjust due to a rapid change in excitation. This response is 
dependent on many conditions that include antigen concentrations, activation levels 
of APCs and danger signals. In addition to these six models, other positions are 
presented, including that of [Silverstein &; Rose 2000]. Although they do not present 
a model of the immune system, they state that the concept of self-non-self discrim
ination is a delusion, arguing that the immune system has evolved in complexity 
gradually over time. To cope with changing circumstances, control mechanisms have 
been evolved in parallel to amplify or dampen the immune response. Such an im
mune response thus becomes a balance between protection and damage dependant 
on the parameters (e.g. quantity and quality) of the immunogenic stimulus. 

In [Anderson &; Matzinger 2000a], the authors examine the relatedness of the six 
models just described (excluding the Silverstein and Rose commentary), based on 
the nature of the signals that turn the effector immune response on. The first signal 
is considered to be the antigen recognition by a lymphocyte receptor, and is required 
by all models. The model by Cohen and that of Grossman and Paul require many 
different signals on top of this for immune activation to occur, whereas the other 
models require just a critical second signal. These second signal models can be split 
into two groups dependent on where this signal comes from. Bretscher's model and 
Langman and Cohn's require the second signal to be provided by a T H cell, whereas 
the model of Anderson and Matzinger and that of Medzhitov and Janeway state it 
comes from an APC. This classification highlights the uniformity of the differences 
in opinion regarding this key area of immune system function. 

7 .2 .2 A C l a s h of M e t h o d o l o g i e s 

Much of the difference of opinion regarding the immune models presented above, can 
be explained by the research methodology that has been employed in formulating 
the model. This is most apparent when comparing the minimal model of Langman 
and Cohn presented in [Langman & Cohn 2000c, Langman & Cohn 2002b], with 
the ideas of Cohen and his collaborator Efroni, who provide a commentary of the 
minimal model in [Efroni & Cohen 2002, Efroni & Cohen 2003]. To appreciate this 
commentary, the minimal model is described in more detail. Langman and Cohn 
state that for the immune system to counteract the attack of pathogen, it must 
generate and regulate new specificities during the lifetime of an individual, and that 
this requires a mechanism of self-non-self discrimination. The minimal model con
siders only the antigen specific lymphocytes of adaptive immunity, and assumes that 
during the embryonic development of an individual, maternal protection provides 
an environment containing only self antigen. Thus, during this early stage in life, a 
process can take place that produces a lymphocyte population capable of determin
ing self from non-self for the duration of the individual's life. The minimal model 
proposes that B, T c and T H cells exist in one of 3 states, an initial state (i-state), 
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an anticipatory state (a-state), and an effector state (e-state). All cells arise in the 
i-state and express no effector responses. Upon binding with an antigen, an i-state 
cell receives a signal (Signal 1) through its antigen receptor and becomes an a-state 
cell. To become an e-state cell, an a-state cell must receive a second signal (Signal 
2) from a regulatory e-state T H . If this Signal 2 is not received, then the a-state 
cell dies and tolerance to the antigen that provided the Signal 1 is achieved. During 
the embryonic development window, e-state T H cells are assumed to be absent and 
so tolerance to self antigen is achieved. In order for this minimal model to logi
cally hold, the occurrence of primer e-state T H cells needs to be accounted for, as a 
small number of initial e-state T H cells are required for the production of all other 
e-state cells. It is proposed that these primer e-state T H cells can be slowly derived 
independently of antigen from i-state T H cells early in life. 

In their commentary, Efroni and Cohen criticise the reductionist logic used to try and 
show the minimal model as the only reasonable model of the immune system's func
tioning. They note that the reasoning used by Langman and Cohn neither matches 
the observed behaviour of the immune system, nor is an appropriate method for 
understanding its complexity. Instead, they advocate the use of complex systems 
research tools to understand how the immune system works, as in their view, the 
immune system is a complex system. Efroni and Cohen go on to concede that re-
ductionism has provided immunology with much information regarding the specific 
agents of the immune system, but claim that it is not possible to deduce its func
tions by simply dismantling it. Instead, they believe that it is now time to acquire 
knowledge about the immune system from the bottom up, building models to ex
amining how networks are created and properties emerge at the level of the system 
as whole. The differences between the research philosophy of Langman and Cohn 
and that of Efroni and Cohen are summed up by Cohn [Cohn 2003] in his response 
to the criticism of Efroni and Cohen. Here, Cohn equates complex systems research 
to computer modelling and believes that the major difference between the two po
sitions is that they (Langman and Cohn) wish to put in place a framework for the 
functioning of the immune system before computer modelling, whereas Efroni and 
Cohen wish to build mathematical and computational models in order to discover 
such a framework. Cohn goes on to claim that: 

"Biological complexity is not a problem solved by building a mathematical, 
philosophical, or computer programming web around any random collection 
of observations." 

This is in stark contrast to the Efroni and Cohen point of view, later summarised 
by [Cohen et al. 2004], who state: 

"Immunology needs precise mathematical modeling and computer simula
tion to help us understand the emergence of immune specificity from the col
lective co-response. The interactions are simply too complex to be grasped 
by intuition" 
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7.3 The Cognitive Immune System 

In the previous section, Cohen's immune model [Cohen 2000a] was identified as an 
example of an alternative immune theory that viewed the immune system from a 
complex systems point of view. In [Cohen 2000b, Cohen 2001, Cohen et al. 2004], 
the author elaborates on these ideas, and presents a holistic immune system that is a 
complex, reactive and adaptive cognitive system. We provide here a description and 
explanation of many of these ideas that have been elicited from [Cohen 2000a, Cohen 
2000b, Cohen 2001, Cohen et al 2004]. 

7.3.1 The Role of the Immune System 

The input to the immune system takes place at the molecular level, and constitutes 
the molecular shapes sensed when bonded to receptors on immune cells. The re
sponse of the immune system to this receptor input is the changing of immune cell 
states and activities, forming a complex reaction between the immune agents. These 
immune agents can have different effects on the body that include cell growth and 
replication, cell death, cell movements, cell differentiation and the modification of 
tissue support and supply systems. The term inflammation is given to this range 
of processes that the immune system has on the body. The output of the immune 
system can, therefore, be considered as inflammation. This inflammatory response 
can be of many different types and degrees depending on the receptor inputs of the 
immune agents. 

The most popularly held purpose for the immune system is defence against pathogen, 
requiring the discrimination between self and non-self. In physiological terms, how
ever, it was highlighted above that the output of the immune system is simply 
inflammation. The effect of this inflammation is to perform maintenance on the 
body keeping it fit for living, not the discrimination of self from non-self antigen. 
Cohen believes that the result of inflammation, and hence the role of the immune 
system, is to repair and maintain the body. As the removal of pathogen is beneficial 
to the health of the body, defence against pathogen can be seen as just a special 
case of body maintenance. In order to achieve body maintenance, the immune sys
tem must select and regulate the inflammatory response according to the current 
condition of the body. This condition is assessed by both the adaptive and innate 
immune agents, which are required to recognise both the presence of pathogen (non-
self antigen) and the state of the body's own tissues (self antigen). The specificity 
of the immune response, therefore, is not just the discrimination of danger, or the 
distinction of self-non-self, but the diagnosis of varied situations, and the evocation 
of a suitable response. In summary, Cohen's maintenance role of the immune system 
requires it to provide three properties: 

• Recognition: to determine what is right and wrong 
• Cognition: to interpret the input signals, evaluate them, and make decisions 
• Action: to carry out the decisions 
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The properties of immune recognition and cognition are covered in the following 
sections, whilst immune action is simply achieved via the effector functions of the 
various immune agents. 

7.3.2 Immune Specificity 

According to the clonal selection theory, immune specificity is a property of the 
somatically generated immune receptors of the T and B cells, which both initiates 
and regulates the immune response. Initiation is achieved via the binding between 
an antigen and a receptor that is specific to it. The response will then stop only 
when there is no antigen or receptor left for binding. Cohen, however, points out 
that immune receptors are intrinsically degenerate, i.e. they can bind more than 
one ligand. Immune specificity, therefore, cannot be purely dependent on molecular 
binding as no one receptor can be specific to a single antigen. Instead, affinity, 
the strength of binding between a receptor and its ligand, is a matter of degree. 
In Cohen's model, immune specificity requires diagnosing varied conditions in the 
body and producing a specific inflammatory response. This specificity emerges from 
the co-operation between immune agents, and does so despite receptor degeneracy 
and the fact that immune agents are also pleiotropic and functionally redundant. 
Pleiotropism refers to the fact that a single immune agent is able to produce more 
than one effect, for example the same cytokine is able to kill some cells whilst 
stimulate others. Functional redundancy concerns the ability of one class of immune 
agents to perform the same function as another, for example cell apoptosis can 
be induced by different immune cells. There are two processes provided by Cohen 
to explain the generation of immune specificity: co-respondence, and patterns of 
elements. 

Co-respondence is a process whereby the agents of the immune system respond 
simultaneously to different aspects of its target, and to their own response. This 
results in a specific picture of an antigen emerging from immune agent co-operation 
via the following process. As previously noted, immune receptors provide the input 
to the immune system by recognising molecular shapes. There are three different 
types of immune receptor that recognise different aspects of antigen. These are the 
receptors of the T and B cells and the innate receptors of macrophages. The T 
cell receptors are restricted to recognising processed fragments of antigen peptides 
bound to a MHC molecule, whereas the B cell receptors (antibodies) recognise the 
conformation of a segment of antigen. The innate receptors of macrophages don't 
recognise antigen, but immune molecules. These molecules form a set of ancillary sig
nals that describe the context in which lymphocytes are recognising antigen. These 
ancillary signals can be classified into three classes: the state of body tissues (some 
receptors detect molecules only expressed on damaged cells), the presence and ef
fects of pathogen (some receptors are unique to infectious agents such as bacterial 
cell wall) and the states of activation of nearby lymphocytes (some receptors detect 
immune molecules produced by lymphocytes). In addition to interacting with their 
target object, the T cells, B cells and macrophages use immune molecules to com
municate their response to each other, and other tissues of the body. This forms 
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an immune dialogue comprised of an on-going exchange of chemical signals between 
the immune cells. Subject to this exchange of information, they update their own 
responses accordingly, be it to increase or decrease the vigour of their response. 

The exchange of information between immune cells is also affected by the existence 
of networks of immune agents, such as cytokine and idiotypic networks, and by the 
processes of positive and negative feedback in these networks. For example, the cy
tokines can be spUt into two functionally similar groups, the T l and T2 cytokines. T l 
cytokines tend to activate destructive effects, whilst the T2 set are less destructive, 
often promoting healing. These sets of cytokines interact, with cytokines re-enforcing 
the production of other cytokines within their own set, whilst suppressing the activ
ities and production of the cytokines in the other set. This produces both positive 
and negative feedback loops for the production of immune agents. Cytokines also 
express pleiotropism, with the effects of some cytokines being able switch between 
the roles of the T l and T2 sets depending on the state of the cell receiving them. 
The process of co-respondence is illustrated by Fig. 7.1. 

Patterns of elements help generate immune specificity as the specificity of a pattern 
can extend beyond that of the individual elements that make up the pattern. Im
mune patterns are a complex arrangement of populations of immune agents, which, 
through their individual activity, produce a specific pattern of activity. For example, 
a pattern can emerge toward a particular antigen from the overlapping reactions of 
a population of degenerate immune receptors. Even though each immune receptor 
is non-specific to its target, the result of all the receptor reactions together will be 
unique, and thus specific to that antigen. Patterns can also be built with the help of 
immune agent pleiotropism and functional redundancy. Here, the ability of different 
immune agents each being capable of responding to a situation with a number of 
different immune effects, allows more response options to be available than just hav
ing a single mapping between immune agent and its effect. Thus, specificity emerges 
through a co-operative pattern of degenerate, redundant and pleiotropic immune 
agents. 

7.3.3 Cognitive Systems 

Before describing the immune system in terms of a cognitive system, the definitions 
Cohen uses for 'cognition' and 'a system' are presented. In biology, cognition is 
often related to the workings of the brain, being equated to awareness or conscious 
thinking. This, however, rules out any entity other than the human brain. Instead, 
cognition can be defined as a particular way of dealing with the world, or adjusting to 
the environment. A system is defined as an arrangement of connected components 
that forms a coherent whole. Such a system transforms an input of energy and 
information into an output of different energy and information. Examples of systems 
in a biological organism include the respiratory, renal, nervous and immune systems. 
Of these, based on the definitions of cognition and a system, only the nervous and 
immune systems are considered to be cognitive. These systems differ from the others 
in the way they utilise internal images of their environment and the processes of self-
organisation to make unconscious decisions. A description of how these unconscious 
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Fig. 7 .1 . Co-respondence, after [Cohen 2000b] page 161, with permission from 
Elsevier. Rectangles represent objects, ellipses within rectangles represent states of 
objects, arrows designate directions of relationships and items separated by broken 
lines can be combined to generate joint products. 

decisions arise will follow an explanation of internal images and the processes 
self-organisation. 

of 

Through their interaction and mutuality of information, entities are able to create 
abstract images of each other that exist in an information space. For example, the 
type of teeth possessed by a creature encodes a functional image of its diet. Such 
images can form a mirror image of what they represent, or provide re-enforcement 
through positive feedback. As a survival mechanism, cognitive systems build internal 
images that map the environment in which they exist. These images then help 
inform its host how to satisfy its needs. Cognitive systems such as the brain and 
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immune system, contain two types of image: innate images inherited from parents, 
and acquired images that are built from life experience. The innate images can be 
split further into three categories: feature detectors and attention preferences, which 
regulate the input to the cognitive system, and motive forces, which influence the 
output of the system. Feature detectors filter the system's input providing it with 
information vital for survival, whilst ignoring other input. Attention preferences 
act to direct the cognitive system to obtain particular types of information from 
the environment, thus acting as feedback loops and enabling the selection of input. 
Motive forces cause the cognitive system to act, influencing the behaviour of the 
system. Examples of motive forces in the brain include emotions and feeling. 

Self-organisation in cognitive systems is typified by the processes of learning and 
acquisition of memory. This involves the attainment of new behaviours and abilities 
from experience, which are then stored for later reference. To achieve this requires 
the unprogrammed and progressive creation of information within the system. This 
requires not only the generation of new information, but the retention of old informa
tion, resulting in a net increase of information. A formal theory of self-organisation 
in biological systems has been developed by Atlan and is summarised in the con
text of the immune system by [Atlan &; Cohen 1998]. This highlights two conditions 
needed in a system for self-organisation to occur: redundancy of information and 
unpredictability (i.e. noise). To generate new information, copies of old redundant 
information are perturbed by the addition of noise, thus changing the old into new 
information. The old information is kept, as only a copy of it is changed, and so 
resulting in the net gain of information. Biological cognitive systems are seen to 
self-organise on two levels: the species level, and the individual level. Species self-
organisation refers to the way a species learns to survive in its environmental niche. 
This information is passed on though genetics from one generation to the next, 
and forms the basis for individual learning by providing the innate images. Indi
vidual self-organisation is more specific, being shaped by the information generated 
through the individual's experience. Individual self-organisation, therefore, extends 
the innate images (e.g. motive forces) by incorporating new information into them 
to create adaptive images. 

To make a decision is to choose from a number of available options. This is made 
possible in a deterministic system if two conditions are satisfied. Firstly, it is clear 
that to make a decision, the system must have options available to it. This means 
being able to relate to a set of inputs in diff'erent ways. Secondly, the system must 
possess an internal history detailing its experience. This internal history, constructed 
from the type of images described above, is used to influence the impact of the 
external inputs to the system. The output generated by a decision is deterministic, 
but the elements of the internal history are so many, and so complex, that the 
choice made appears to be unpredictable. This decision making process can thus 
be considered a process of associating a particular circumstance encountered in the 
external environment, with a class of feeling present within the system in the form 
of internal images. To put it another way, the decision emerges from the match of 
the environmental circumstances with the internal motive. A cognitive system that 
makes such decisions without consciousness can be summed up by the following 
cyclical process. The cognitive system impacts its environment by making choices. 
These choices emerge from the internal images of the system that have been shaped 



7 Alternative Inspiration For Artificial Immune Systems 129 

by the processes of self-organisation. This self-organisation is in turn driven by 
the system's environment. This type of cognitive system is both a concurrent and 
reactive system. 

7.3.4 Immune Cognition 

According to Cohen, the immune system achieves its role of body maintenance 
through a cognitive strategy, utilising the processes described in the previous sec
tion. Here, a cognitive system was described as using internal images and the forces 
of self-organisation to make deterministic decisions. It is the outcome of these deci
sions that are proposed to perform body maintenance. Both the adaptive and innate 
arms of the immune system are seen to self-organise via the creation of information 
from noise and redundancy. Self-organisation of the adaptive arm is seen to oc
cur in the construction of the T cell and B cell antigen receptor repertoires. This 
receptor repertoire is produced using redundancy provided by the proliferation of 
cellular clones, and noise provided by the random genetic mutations that produce 
the variable regions of the clone's antigen receptor. These clones are then subjected 
to selection (T cell maturation in the thymus and the affinity maturation of B cells) 
to produce the immune receptor repertoire. Self-organisation of the innate arm of the 
immune system is seen to occur by the generation of the actual response repertoire 
of the immune system via the fine tuning of the set of innate immune responses. 
This determines the types of response that will be connected to the signals perceived 
by the lymphocyte receptor repertoire. The process of self-organisation to produce 
this actual response repertoire also involves the generation of a particular cytokine 
profile from their redundant and pleiotropic nature. 

Cohen states that the immune system utilises both innate and adaptive images. In 
the process of co-respondence, the immune cells can be seen to use innate feature 
detectors and attention preferences to filter out the information they require from 
their target. Innate motive forces are said to exist in the form of the innate response 
repertoire that undergoes the self-organisation process described above to produce 
the actual immune response repertoire. This resulting response repertoire can thus be 
viewed as an adaptive image, providing the immune system with an internal map of 
its possible immune responses. Other adaptive images are generated by the immune 
system, which can be categorised into concrete, abstract and distributed images. 
Concrete images are those based on physical contact points such as antigen receptors 
forming an image of the antigens it binds. Abstract images are not constrained to 
physical space, and are formed out of the mutuality of information. For example, 
an immune reaction made up of cells and cytokines maps to the antigen and other 
signals that elicited the response. Distributed images are expressed as the patterns of 
immune agents distributed around the body, for example the entire T cell repertoire 
is an image of the T cell selections that have occurred in the body. 

Cognitive choice, as highlighted above, is deterministic and emerges from the exer
cising of options under the influence of an internal history. The decision that the 
immune system must make is the choice of an inflammatory response to the per
ceived input. Decision making in a cognitive system was likened to the association 
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between a particular in the environment, with a class of action. In the immune sys
tem, therefore, the decision making process is the association between the current 
immune environment perceived through the receptor repertoire (images of percep
tions), with a suitable inflammatory response from the response repertoire (images 
of responses). This decision is achieved through the process of co-respondence de
scribed above. 

Memory is also a property of cognitive systems and is formed via learning from past 
experiences. In the immune system, memory is expressed through the differences 
that are seen to arise between a primary and secondary infection from a particular 
pathogen. During the first infection, the immune system must expand its T and 
B cell repertoire to recognise the pathogenic antigen, and memory T and B cells 
are selected that express the innate effector response needed to kill the pathogen. 
During the second infection, the immune system can draw on its experience from 
the first infection to rid itself of the pathogen immediately. Thus, the memory T 
and B cells no longer need the full string of signals needed to produce the effector 
response in the first infection. Immune memory can, therefore, be considered as the 
replacement of the context of an infection. This memory is never in a final state, 
and continues to evolve during the lifetime of the individual. 

7.4 Alternative Inspiration for AIS 

From Cohen's immune model, a number of properties can be identified that could 
be useful computationally in an AIS. It is noted that some of these ideas are present 
in Jerne's immune theory and so have already been used as inspiration for AIS (see 
Chapter 3 in this book for more details). However, these properties are still high
lighted here as they form key parts of Cohen's model, and the way in which they 
are integrated into Cohen's model may highlight alternative methods of inspiration. 
There are two levels of scale that can be identified for AIS inspiration from Cohen's 
model, the high level ideas and paradigms that describe the functioning and be
haviour of the immune system, and the lower level processes that are proposed to 
achieve the described functions. The high level ideas include: 

• Cognition: The immune system is a cognitive system that can make unconscious 
decisions dependant on the information presented to it 

• Images: Adaptive and innate images provide a history of past immune encoun
ters. 

• Self-Organisation: Learning and memory arise through self-organisation. 
• Maintenance: The role that Cohen sees the immune system as fulfilling, rather 

than the discrimination of self from non-self. 
• Co-operation: The immune response is a collaborative effort between the innate 

and adaptive immune agents. 
• Emergent Behaviours: The observed immune responses and properties, such as 

immune specificity, emerge from the functioning of immune agents rather than 
a one-to-one mapping between a receptor and antigen. 
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Examples of the low level processes include: 

• Multiple Immune Agents: Co-respondence involves the interactions of different 
agents such as macrophages, T and B cells. 

• Signalling Networks: Immune agents communicate using an immune dialogue of 
signalling molecules. 

• Feedback: Positive and negative feedback help to co-ordinate the immune re
sponse. 

• Degeneracy: The degeneracy of antigen receptors provides a many-to-one rela
tionship between the receptors and specificity of recognition (see Chapter 6 in 
this book for a further discussion on this topic). 

• Pleiotropia and Redundancy: The pleiotropic and redundant nature of immune 
agents are also important in providing specificity of response. 

By highlighting these properties, it is clear that the investigation of an alternative 
immune theory can broadened the scope for AIS inspiration. It is also possible to 
identify some application areas to which these properties might be applied. For ex
ample, the notion of the immune system as a concurrent and reactive maintenance 
system, lends itself well to application domains that operate in dynamic environ
ments, such as embedded systems and robotics. For other properties such as degen
eracy, however, it is not entirely clear how they can be beneficial to an AIS, and so 
it can be useful to investigate these properties in more detail. This is carried out 
for degeneracy in section 7.5, identifying it as an important biological property and 
how it might be a useful algorithmic recogntion property. First, however, we provide 
a general discussion on how the engineer might best exploit immune properties to 
build AIS. 

7.4.1 Exploiting the Inspiration 

As the field of AIS has matured, a better understanding of how they work and how 
they should be designed is currently being sought [de Castro & Timmis 2002a, Freitas 
& Timmis 2003, Hart & Ross 2004, Stepney et al. 2004]. Common to all of these 
works, is the requirement on the designer to consider both the biology on which 
the AIS is based, and the AIS application area. By doing this, it is hoped that the 
designer will take a more principled approach to algorithm design, leading to a better 
suited and performing algorithm. As highlighted in Chapter 3, [de Castro & Timmis 
2002a] introduced a layered framework for engineering AIS that identifies three basic 
system design elements: component representations, affinity measures and immune 
algorithms. [Freitas & Timmis 2003] highlight the need to consider the problem 
for which the AIS is being designed, thus advocate a problem-oriented approach to 
AIS design. They review AIS for the application of classification, and show how the 
selection of an algorithm, representation scheme and evaluation function in AIS can 
all bias the results. [Hart & Ross 2004] argue that the set of matching mechanisms 
(affinity measure) of de Castro and Timmis' layered framework makes AIS distinct 
from other bio-inspired algorithms, thus suggest this should be chosen with care. 
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One of the main problems involved in designing bio-inspired algorithms, is deciding 
which aspects of the biology are necessary to generate the required behaviour, and 
which aspects are surplus to requirements. To help tackle this and enable the devel
opment of bio-inspired algorithms in a more principled way, [Stepney et al. 2004] have 
suggested a conceptual framework for designing these algorithms. This framework 
promotes the use of an interdisciplinary approach to developing and analysing these 
algorithms. It encompasses a number of modelling stages, the first of which utilises 
biological observations and experiments to provide a partial view of the biological 
system from which inspiration is being taken. This view is used to build abstract 
models of the biology, which are then open to validation. Frameworks can then be 
built and validated from these models to provide the principles for designing and 
analysing the required bio-inspired algorithms. Using such a framework aims to stop 
the designer from making naive assumptions about the biological processes that are 
providing the inspiration, and thus preventing the development of algorithms that 
are just a weak analogy of the process on which they are based. 

We suggest that when taking inspiration from an alternative immune ideas, the 
designer should follow the suggestions just outline. In particular, the adoption of 
the conceptual framework is deemed especially beneficial. For instance, the immune 
ideas may not be fully formed or well understood, so it is possible that unexpected or 
unexplained behaviours will arise from the properties being modelled. Following the 
ideas of the conceptual framework should help capture such occurrences. Addition
ally, the immune models built by the AIS practitioner to investigate the properties of 
immune theories may be of help to immunologists. By following a principled design 
methodology, these models should be able to provide experimental evidence for, or 
against, the assertions made by immunologists in their theories. This should provide 
useful insights and help to develop these theories further. 

The process of following the conceptual framework approach requires the building of 
models of the immune processes. Building these models is an aid to understanding 
how these processes work, and has been carried out by theoretical immunologists and 
AIS practitioners for many years. The immune models used in these fields naturally 
fall into two main classes: mathematical models and computational models. The ma
jority of the mathematical models consist of differential equations that model the 
population dynamics of interacting immune agents. An overview of many of these 
techniques is provided by Perelson [Perelson & Weisbuch 1997]. Successful compu
tational models that have been used for immune process modelling include cellular 
automata [Kleinstein & Seiden 2000], Boolean networks [Weisbuch &; Atlan 1988] 
and UML statecharts [Efroni et al. 2003]. When choosing modelling techniques for 
immune processes, it is important that they are suited to the nature of the processes 
being modelled. For example, if the immune process is an emergent behaviour, then 
the designer needs to choose a modelling technique that allows emergence to occur. 
Such modelling tools are used extensively by the Artificial Life (ALife) commu
nity. Examples of these ALife modelling techniques include recursive developmental 
systems, such as cellular automata and L-systems, evolutionary systems, such as 
genetic algorithms, (multi-)agent based systems, such as swarms, and networks of 
automata, such as Boolean networks. In addition to these tools, techniques that 
have been utilised in other biological modelling areas may be appropriate to im
mune modelling. For example the work by Johnson et al. [Johnson et al. 2004] 
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utilises object-oriented methods to model intra-cellular processes, and a similar ap
proach could be used successfully in immune modelling. An effective example of a 
modelling technique taken from a different area of modelling is given by Chao et al. 
[Chao et al. 2004], where a stochastic age-structured model, often used in ecology, 
has been applied to modelling immune cell populations and transitions. 

7.5 Degeneracy: An Alternative Inspiration Example 

It was previously identified that the lymphocyte receptors of immune agents are 
degenerate, and that this may provide possible inspiration for AIS. Degeneracy, 
however, is not a unique property of just the immune system in the biological world. 
According to [Edelman &; Gaily 2001], degeneracy, which they define as: 

"the ability of elements that are structurally different to perform the same 
function or yield the same output" 

is a ubiquitous biological property present at most levels of biological organisation. 
Considering this, the impact of degeneracy on biology as a whole as well as the 
immune system are investigated in this section. This then leads to the identification 
of how degeneracy might be exploited for the benefit of AIS. 

7 .5 .1 D e g e n e r a c y in B io log ica l S y s t e m s 

[Edelman & Gaily 2001] state that degeneracy appears at each of the genetic, cellu
lar, system and population levels of biology. To highlight this, they provide a long 
list of examples of degeneracy in biology, which includes: 

• Genetic code: different sequences can encode a polypeptide 
• Protein folding: different polypeptides can fold to become structurally and func

tionally equivalent 
• Intra-cellular signalling: parallel pathways of e.g. hormones transmit degenerate 

signals 
• Connectivity in neural networks: connections and dynamics are degenerate 
• Body movements: different patterns of muscle contractions can produce equiva

lent movements 
• Inter-animal communication: there are many ways to transmit the same message, 

e.g. via language 

Edelman and Gaily go on to argue that the omnipresence of degeneracy in biology is 
a result of it being conserved and favoured by natural selection. As natural selection 
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can only operate on populations of genetically dissimilar organisms, many different 
overlapping genes and gene networks will tend to contribute to a phenotypic feature 
that is undergoing selection. Degenerate systems will thus be maintained as the 
selection process cannot assign the responsibility of this feature to any particular 
gene or network. 

Edelman and Gaily also note that degeneracy in biological systems is typically ac
companied with complexity, and suggest that degeneracy plays a key role in complex 
systems. The definition of a complex system used by [Edelman & Gaily 2001] is: 

"one in which smaller parts are functionally segregated or differentiated 
across a diversity of functions but also as one that shows increasing degrees 
of integration when more and more of its parts interact" 

This relationship between complexity and degeneracy is based on earlier work re
ported by [Tononi et al. 1999]. Here, information theoretical concepts are used to 
develop functional measures of degeneracy and redundancy in a neural network with 
respect to a set of outputs. These measures are, however, considered to be appli
cable to any biological network or complex system. The definition of degeneracy 
used by Tononi et al. is the same as that provided above by Edelman and Gaily, 
and redundancy is defined as occurring when the same function is carried out by 
identical elements. Experiments using the neural network model and the degeneracy 
and redundancy measures showed that degeneracy is low in systems where the indi
vidual elements can aff"ect the output independently. Degeneracy is high, however, 
in systems where diff'erent elements can at the same time affect the output in similar 
ways and have independent eff'ects. Additionally, using a complexity metric defined 
as the measure of average mutual information between subsets of the system, it was 
shown that systems with high degeneracy also expressed high complexity. Degener
ate elements were also observed to produce different outputs in different contexts, 
thus making degenerate systems extremely adaptable to changes in their environ
ment. Lastly, the relationship between degeneracy and redundancy was examined, 
showing that degenerate systems must express a degree of functional redundancy, 
whereas a fully redundant system is not necessarily degenerate. 

7.5.2 Degeneracy in the Immune System 

Degeneracy in the immune system is typified by the degenerate nature of lymphocyte 
receptors described above in section 7.3.2. The discussion here will focus on the 
repercussions that receptor degeneracy has for the functioning of the immune system. 
[Parnes 2004] provides a representative chronology of the usages of the concept of 
degeneracy in immunology over the last 35 years. However, this chronology shows 
no rigorous definition of the term, so for this discussion, the definition from [Cohen 
et al. 2004] is adopted, which describes antigen receptor degeneracy as the: 

"capacity of any single antigen receptor to bind and respond to (recognize) 
many different ligands" 
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It can be seen that this definition holds when compared to the general definition of 
degeneracy in biological systems by Edelman and Gaily that is stated above. 

[Parnes 2004] argues that in the light of receptor degeneracy the challenge for im
munology is to retain a meaningful explanation of immune activity, and that when 
taken seriously, the implication of degeneracy produces an alternate view of the 
immune system that does not fit with existing ideas. This can been seen from the 
description of Cohen's cognitive model given in section 7.3. Indeed, as [Parnes 2004] 
points out, Cohen's model attempts to cover the gap between the immunologist's 
idea of an immune response and what is known about the properties of adaptive 
immune components, such as the the inherent degeneracy of antigen receptors. 

[Cohen et al. 2004] reports that the degeneracy of antigen receptors leads to two 
consequences for immune receptor recognition, both of which have been proven 
experimentally (see [Cohen et al. 2004] for appropriate references): 

• Poly-Clonality: A single antigen epitope can activate different lymphocyte clones 
• Poly-Recognition: A single lymphocyte clone can recognise different antigen epi

topes 

It is noted, however, that most immune responses do not express extreme poly-
clonality as mechanisms such as clonal competition must exist to restrict it. Clonal 
competition should favour those lymphocyte clones whose receptors have the great
est affinity to an antigen epitope, thus they should proliferate over other clones. 
However, the existence of poly-recognition causes more problems for the traditional 
clonal selection theory view that relies on the strict specificity of lymphocyte clones. 
Thus, the degeneracy of antigen receptors above all provides the biggest challenge to 
the validity of the clonal selection theory. Cohen goes on to provide a description of 
colour vision as an example of the power of receptor degeneracy. The human eye pos
sesses millions of colour receptors called cones, of which there are only three types 
(red, green and blue). These receptors are degenerate, each responding to broad 
range of light wavelengths, which overlap between the different cone types. The hu
man brain, however, is able to perceive thousands of specific different colours, thus 
colour specificity is not encoded by the cones, but achieved via subsequent neuronal 
firings. Likewise, Cohen envisages immune specificity to be encoded in the patterns 
of degenerate, co-responding lymphocytes and their allied cells, not in the initial 
clonal activation of lymphocytes. 

Other than Cohen's cognitive model of the immune system, other models exist that 
try and incorporate receptor degeneracy into the functioning of the immune system. 
Most notabe from a computational view point, is that of [Leng & Bentwich 2002], 
who present the immune system as a fuzzy system in order to compensate for the 
defects in the two-valued self-non-self classification. This model holds on to all 
the basic tenets of the clonal selection theory, but replaces the antigen-receptor 
selection and binding mechanism with a fuzzy recognition process. This process uses 
stimulation thresholds of a set of fuzzy lymphocytes functioning as a statistical clone 
for the activation of an immune response [Parnes 2004]. Thus, Leng and Bentwich 
conclude that in a fuzzy immune system the response to self or non-self antigen 
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may include many effector functions, not just the response or no response of the 
original clonal selection theory. This fuzzy immune system view is shared by others 
such as [Sercarz & Maverakis 2004], who advocate the use of fuzzy logic models to 
help understand receptor degeneracy and its implication to the functioning of the 
immune system. 

7.5.3 Degeneracy and AIS 

The description of degeneracy just presented pitches it as an important, advanta
geous and powerful property at all levels of biological organisation including the 
immune system. At present there are no instances within the AIS literature where 
degenerate detectors have been directly addressed, although degeneracy is an issue 
that is both being discussed [Cohen et al. 2004, Parnes 2004, Sercarz & Maverakis 
2004] and modelled (see Chapter 6 in this book) by immunologists. Fuzzy logic, how
ever, has been used in association with AIS by a number of authors. Work by [Alves 
et al 2004], use an AIS to induce a set of fuzzy classification rules for the purposes 
of data mining. These discovered rules are of the form "IF (fuzzy conditions) THEN 
(class)", but fuzzy logic is not used as part of the AIS itself. [Gomez et al. 2003] use 
a real-valued negative selection algorithm to generate a set of fuzzy detector rules 
given a set of self samples. These detectors are then used to determine whether a 
new sample is self or non-self. Thus again, this approach does not incorporate fuzzy 
logic into the actual AIS. The work by [Nasaroui et al. 2002], however, does use 
fuzzy logic within the actual antigen-antibody matching mechanism of an AIS used 
to mine web data. Their AIS is based on an immune network model by [Knight & 
Timmis 2001] called AINE. This algorithm uses the idea of an artificial recognition 
ball (ARB) to represent an n-dimensional data item that uses a threshold measure 
to match against antigen and other ARBs in the network. [Nasaroui et al. 2002] 
adapt the ARBs to represent fuzzy sets of data items instead of a single data item, 
removing the need for a crisp thresholding measure. The main motivation behind 
introducing this fuzzy mechanism into the AIS appears to be to deal with the weak
nesses of previous AIS approaches, and is thus driven from an application viewpoint, 
not from specific immunological inspiration. 

It is clear that incorporating degenerate detectors into AIS will affect the dynamics 
of the AIS algorithm. Instead of recognition being the responsibility of a single 
detector, recognition will emerge from the collective response of a set of detectors. 
The assumed benefit of an AIS with degenerate detectors will be to provide greater 
scalability and generalisation over existing classifier AIS. Greater scalabihty can be 
achieved as the capacity to discriminate patterns collectively by a set of degenerate 
detectors should be greater than by single detectors. Thus, as the number of patterns 
to be recognised increases, the number of detectors needed in an AIS with degenerate 
recognition should be less than that of existing AIS. Better generalisation ability to 
recognise unseen patterns could be achieved as similar patterns should produce a 
similar pattern of response from the set of detectors. In [Andrews & Timmis 2006], 
we have begun initial investigations into degenerate detectors for AIS. Here, we 
follow the conceptual framework approach and build an abstract computational 
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model in order to understand the properties of degenerate detectors free of any 
application bias. The model is based on the activation of T H cells in the lymph 
node, the sites in the body where the adaptive immune response to foreign antigen 
in the lymph are activated. Contained within the model are APC, antigen and T H 
cell agents that move and interact in a 2-dimensional cellular space. The T H cell 
agent receptors are assumed to be degenerate and their response to different antigen 
agents is measured. This model should help ascertain whether the perceived benefits 
of degenerate detectors in AIS described above are obtainable. 

7.6 Conclusions 

Since Jerne presented his novel idiotypic network theory, immunologists have ar
gued over the meaning, nature and importance of self-nonself discrimination in the 
immune system, and these arguments are still abound today [Langman &; Cohn 
2000c, Anderson & Matzinger 2000b, Cohen 2000a, Tauber 2000, Langman & Cohn 
2002b, Efroni & Cohen 2002, Cohn 2003, Efroni & Cohen 2003]. So where does this 
leave the engineer when deciding what aspects of immunological theory to take in
spiration from? We suggest that in order for the AIS practitioner to make a more 
informed choice, he keeps an open mind on the type of immunological ideas he can 
take inspiration from. By investigating alternative theories of the workings of the 
immune system, different immune properties may become apparent that could be 
used as inspiration for AIS in new application domains. Alternatively, inspiration 
may be taken from ideas in these theories that explain the emergence of immune 
properties by different mechanisms. A good AIS doesn't always have to be based 
the theories that are currently most popular amongst immunologists. 

In this chapter we have highlighted the disagreements and methodology clashes 
amongst a number of immunologists concerning how to understand the functioning 
of the immune system. Based on this, we have investigated the ideas of Irun Cohen 
who views the immune system as a cognitive system, to be understood through 
complex systems modelling approaches. From Cohen's ideas, we have identified a 
number of computationally appealing properties as possible areas of inspiration for 
novel AIS. From these it may be possible to highlight application areas to which they 
might be applied, although further investigations should reveal more insight. Faced 
with an idea for AIS inspiration, we suggest that following a suitable methodology 
such as the conceptual framework approach is advantageous to try and extract the 
key biological properties free of any application bias. In the final section, we have 
provided an example of investigating an alternative inspiration property for AIS. 
This property, degeneracy, is investigated in detail to reveal possible generalisation 
and scalability benefits for an AIS utilising degenerate detectors. 
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Summary. Immunoinformatics is facilitating important change within immunol
ogy and is helping it to engage more completely with the dynamic post-genomic 
revolution sweeping through bioscience. Historically, predicting the specificity of 
peptide Major Histocompatibility Complex (MHC) interactions has been the major 
contribution made by bioinformatics disciplines to research in immunology and the 
vaccinology. This will be the focus of the current chapter. Initially, we will review 
some background to this problem, such as the thermodynamics of peptide binding 
and the known constraints on peptide selectivity by the MHC. We will then review 
artificial intelligence and machine learning approaches to the prediction problem. 
Finally, we will outline our own contribution to this field: the application of QSAR 
techniques to the prediction of peptide-MHC binding. 

8.1 Introduction 

Immunoinformatics - a newly emergent sub-discipline of bioinformatics, which ad
dresses informatic problems within immunology - uses computational methodol
ogy to attack the critical immunological problem of epitope prediction. As high 
throughput biology begins to reveal the genomes of pathogenic bacteria, viruses, 
and parasites, accurate and reliable predictions will become increasingly important 
tools for the discovery of novel vaccines, reagents, and diagnostics. In this chapter 
we rehearse some of the key issues adumbrated in Chapter 2, Immunoinformatics 
and Computational Vaccinology: a brief introduction, which should be consulted for 
background information by the interested reader. The accurate prediction of T cell 
epitopes remains problematic and confounding. Current methods for the in silico 
identification of T cell epitopes rely on the accurate prediction of peptide-MHC 
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affinity. As such, predictive computational models of peptide-Major Histocompat
ibility Complex (MHC) binding affinity are becoming a vital, if underappreciated 
and thus underused, component of modern day computational immunovaccinology. 
Historically, such approaches have been built around semi-qualitative, classification 
methods, but these are now giving way to quantitative regression techniques. 

The products of the MHC play a fundamental role in regulating immune responses. 
T cells recognise antigen as peptide fragments complexed with MHC molecules, a 
process requiring antigen degradation through complex proteolytic digestion prior to 
complexation. The primary, but not the sole, role of MHC proteins within the adap
tive immune system is thus to bind peptides and "present" these at the cell surface 
for inspection by T cell antigen receptors (TCRs). In order to better understand 
the sequence dependence of peptide binding to MHCs (Major Histocompatibility 
Complex), and thus identify immunogenic epitopes, the science of immunology has 
sought to explore the amino acid preferences exhibited by different MHC alleles. 

Within the human population, for example, there are an enormous number of differ
ent genes coding for MHC proteins, each exhibiting a different sequence selectivity 
for peptide-binding. T cell receptors, in their turn, also exhibit different affinities for 
peptide-MHC complexes (pMHCs). The combination of MHC and TCR selectivies 
thus determines the power of peptide recognition in the immune system and thus 
the recognition of foreign proteins and pathogens. However, typical affinities exhib
ited by peptides for MHC are, on average, several orders of magnitude greater than 
those of TCR for pMHC. 

A simple way of looking at the phenomenon of peptide-MHC interaction is to say 
that each MHC allele, be it class I or class H, binds peptides with particular sequence 
patterns. A more accurate description would be to say that MHCs bind peptides 
with an equilibrium binding constant which is dependant on the nature of the se
quence of the bound peptide. Peptide-MHC interactions obey the same underlying 
physical laws, the same fundamnetal molecular mechanisms as do any and all other 
forms of biomolecular association event. The driving forces behind this binding are 
precisely the same as those driving the binding of drug molecules to their receptors 
or inhibitors to their target enzymes. 

Peptide binding to MHCs is, arguably, the most important, and is certainly the 
best studied, aspect of the epitope recognition process. Once a peptide has bound 
to a MHC, and the resulting complex displayed on the cell surface, it is, as we 
have said, available for T cell-mediated surveillance by the immune system. It is 
generally accepted that a pMHC complex will only be recognized by a TCR if the 
epitope binds with an affinity greater pIC50 > 6.3, or a half-life > 5 minutes, or 
some similar figure for other binding measures. Some peptides binding at these 
affinities will become immunodominant epitopes, others will be weaker epitopes, 
and still others will show no T cell activity. This is partly a function of the T cell 
repertoire: the full and exact enumeration of the repertoire is something usually not 
known, at the molecular level, for an individual organism. Its structure, and the 
relative distribution of different specificities within it, is one of a prodigious number 
of alternatives and arises as a consequence of intrinsic factors, such as the organism's 
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genome, as well as extrinsic factors, such as the infection history and environmental 
exposure to microbes experienced by that individual. 

The selectivity for peptides exhibited by an MHC molecule is, by contrast, deter
mined solely by its molecular structure. It undergoes no form of somatic hyper 
mutation or affinity maturation or thymic selection. It is, as part of a restricted set 
of alleles, an inherited characteristic of individual organisms. However, in man, as 
in most other species, the MHC is both polygenic (there are several MHC class I 
and MHC class II genes) and polymorphic (there are multiple variants, or alleles, 
of each gene). Each class of MHC is represented by several loci: HLA-A, HLA-B 
and HLA-C for class I and HLA-DR, HLA-DQ and HLA-DP for class 11. All MHC 
loci are co-dominant: both maternally and paternally inherited sets of alleles are 
expressed. The linked set of MHC alleles found on one chromosome is called a hap-
lotype. MHCs exhibit extreme polymorphism: within the human population there 
are, at each genetic locus, a great number of alleles. The October 2005 release of 
the IMGT/HLA sequence database, for example, contains 2,280 allele sequences, of 
which over 1352 are class I (414 HLA-A, 728 HLA-B, 210 HLA-C) and over 749 are 
class II (506 HLA-DR, 100 HLA-DQ, 143 HLA-DP) MHC molecules. This number 
is constantly increasing. Many of these alleles exist at a significant frequency (> 1%) 
within the human population. MHC alleles may differ by as many as 30 amino acid 
substitutions. Such a level of polymorphism implies a selective pressure to create 
and maintain it; see Chapter 9, by Borghans et al Pairs of MHC proteins will have 
either very similar or very different select ivies, leading to the possibility of grouping 
MHCs into so-called super-types, which is described in more detail elsewhere in this 
book; see Chapter 10, by Guan et al. 

There is also some evidence suggesting that the probability of a particular peptide 
being a T cell epitope is proportional to the MHC binding affinity of that peptide. 
The still unsolved trick is to establish which will, or will not, be recognized by the 
TCR. Generally, the approach taken has been to reduce the number of epitopes to 
a small value using prediction. These peptides are then tested as potential epitopes 
in one of a great variety of assays based on different measures of T cell activation, 
such as T cell killing or thymidine incorporation, inter alia. We shall assume, as 
others do, that the prediction of MHC binding is the most discriminating step in 
the presentation-recognition pathway and thus progress to explore methods able to 
predict such binding. Firstly, however, we shall examine the nature of peptide MHC 
binding as a physical event and how its strength can be measured. 

8.2 The Underlying Molecular Phenomenology of M H C 
Binding 

Many ways exist to measure the binding of molecules. These include equilibrium 
constants, which include association (Ka) and dissociation constants (Kd), as well 
radiolabeled and fluorescent IC50 values that approximate equilibrium binding con
stants under certain conditions. Other types of measurement for peptide-MHC bind-
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ing include BL50 values (also known as SC50, EC50 and C50 values), as calculated 
in a peptide binding stabilization assay, Tm values (the temperature at which 50% 
of MHC protein is denatured), and /?2-microglobulin dissociation half-life. This final 
value, while strictly a kinetic measurement, is commonly believed to correlate well 
with binding affinity. These different measures form a hierarchy, with equilibrium 
constants, when calculated correctly, being the most reliable and accurate. 

Peptide binding to MHC molecules can be quantified as one would quantify any 
other biomolecular receptor-ligand interaction: 

R-hL<—>RL[1] 

Where R is the receptor, or MHC in this case; L the ligand, or peptide in our case; 
and RL is the receptor-ligand, or peptide-MHC, complex. Such interactions obey 
the law of mass action: the rate of reaction is proportional to the concentration of 
react ants. Thus, the forward reaction rate is proportional to [L] [R]. The rate of the 
reverse reaction is proportional to [RL], since there is no other species involved in 
the dissociation. At equilibrium, the rate of the forward reaction is equal to the rate 
of the reverse reactions, and so (using ki and k_i as the respective proportionality 
constants): 

ki[R][L] = k-i[RL] [2] 

Rearranging: 

Where K>i is the equilibrium association constant and K D is the equilibrium disso
ciation constant, which also represents the concentration of ligand which occupies 
50% of the receptor population at equilibrium. 

The free energy of binding is related directly to the equilibrium constant: 

AGMnd==-RT\n(KD) [4] 

Where AGbind is the Gibbs free energy of binding, R is the gas constant, and T is 
the absolute temperature. The free energy (AG) is a product of enthalpy (^H) and 
entropy (^S) components related by the Gibbs-Helmhotz equation: 

AG = AH- TAS [5] 

In the absence of non-linear effects, the enthalpy and entropy term can be obtained 
using the van't Hoff relation: 

]r^ l^ _ AH AS djlnKp) _ AH r«l 
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The potential usefulness of this obvious: plotting In(KD) vs 1/T should describe 
a straight line with a slope equal to (z^H/R) and an intercept on the y axis of 
(Z\S/R). Van't HofF plots only identify that part of the binding enthalpy related to 
the observed measurement signal. So, only for a direct transformation from a defined 
initial state to a final state will the enthalpy be equivalent to ARbind, as obtained, 
say, by ITC. No intermediate states are allowed nor should other steps be involved. 
AG typically has only moderate temperature dependence within biological systems, 
thus an accurate estimate of enthalpy and entropy is not usually possible using van't 
Hoff" plots. 

Energy is a property that invests a system with the ability to produce heat or 
perform work. Enthalpy is defined formally by: 

H = U + PV [7] 

Where V is volume, P is pressure, and U is the total internal energy of a system. 
When pressure is constant, AE. is the heat change absorbed from its surroundings 
by a system. For a molecular system, it is typically a function of the system's kinetic 
and potential energies. Entropy is often described as a measure of disorder within a 
system. However, increasing entropy can be better described as the partitioning of 
energy into an increasing number of explicit microstates. Within complex multicom-
ponent systems such as these, it is often difficult to properly decompose entropies 
and enthalpies into clearly separable molecular contributions. 

Favourable enthalpic contributions to the free energy can include complementary 
electrostatic interactions, such as salt bridges, hydrogen bonds, dipole-dipole inter
actions, and interactions with metal ions; and van der waals interactions between 
ligand and receptor atoms. Entropic contributions can include global properties of 
the system, such as the loss of three rotational and three vibrational degrees of 
freedom on binding, and local properties, such as conformational effects including 
the loss of internal flexibility in both protein and ligand. Unfavourable entropic 
contributions from the increased rigidity of backbone and side-chain residues on lig
and binding within the binding pocket are, in part, offset by favourable increases 
in conformational freedom at nearby residues. Strictly, all protein-ligand binding 
also involves multiple interactions with the solvent, typically a weakly ionic aque
ous solution. These solvent interactions lead to so-called solvation, desolvation, and 
hydrophobic effects, each with both an enthalpic and an entropic component. 

Experimentally, the measurement of equilibrium dissociation constants has most of
ten been addressed using radioligand binding assays. There are many other ways 
to determine equilibrium constants more exactly, such as BIAcore and isothermal 
titration calorimetry. However, most have yet to be used to study peptide MHC in
teractions. Saturation analysis measures equilibrium binding at various radioligand 
concentrations to determine affinity ( K D ) , while competitive binding experiments 
measure binding at single concentrations of labeled ligand in the presence of varying 
concentrations of unlabeled ligand. Competition experiments can be either homolo
gous (where the labeled and unlabeled peptides are the same) or, more commonly, 
heterologous (where labeled and unlabeled peptides are different) inhibition assays. 
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IC50 values, obtained from a competitive radioligand or fluorescence binding assay, 
are the most frequently reported affinity measures. The value given is the concentra
tion required for 50% inhibition of a standard labeled peptide by the test peptide. 
Therefore nominal binding affinity is inversely proportional to the IC50value. Values 
obtained from radioligand or fluorescence methods may be significantly different. 
IC50 values for a peptide may vary between experiments depending on the intrinsic 
affinity and concentration of the standard radiolabeled reference peptide, as well as 
the intrinsic affinity of the test peptide. 

The K D of the test peptide can be obtained from the IC50 value using the relationship 
derived by Cheng and Prussoff: 

F5r) 
WhereK^y is the dissociation constant for the inhibitor or test peptide, Kf) is the 
dissociation constant for the standard radiolabeled peptide, [Llot] is the total con
centration of the radiolabel. This relation holds at the midpoint of the inhibition 
curve under two principal constraints: the total amount of radiolabel is much greater 
than the concentration of bound radiolabel and that the concentration of bound test 
peptide is much less than the IC50. This relation, although an approximation, holds 
well under typical assay conditions. In practice, the variation in IC50 is often suffi
ciently small that values can be compared between experiments. 

BL50 values are also obtained from a peptide binding assay. They are the half max
imal binding levels calculated from mean fluorescence intensities (M.F.I.) of MHC 
expression by RMA-S or T2 cells. Cells are incubated with the test peptide and 
then labeled with a fluorescent monoclonal antibody. The nominal binding strength 
is again inversely proportional to the BL50 value. These assays are often termed sta
bilization assays, as it is presumed that cell surface MHCs are only stable when they 
have bound peptide. Given that peptides are typically administered extracellularly, 
there remain questions about the precise molecular mechanism of peptide induced 
MHC stabilization. Moreover, the measured BL50 values also represent an approx
imate overall value from a complex multi-component equilibrium. The interaction 
between peptide and MHC, as reflected in complex stability, is measured by binding 
to it either an allele- or class I-specific antibody, which is then bound by a fluores-
cently labeled antibody specific for the first antibody. The resulting complex is then 
assayed spectrophotometrically using flow cytometry or an equivalent technique. 

The half-life for radioisotope labeled /?2-microglobulin dissociation from an MHC 
class I complex, as measured at 37 ° C is a commonly reported alternative binding 
measure. This is a kinetic measurement rather than a thermodynamic one, although 
it is often assumed that the greater the half-life the stronger the peptide-MHC 
complex. The half-life (ti/2) equals: 

J. _ In 2 ^ 0.693 rol 
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Here the ti/2 corresponds to the dissociation of the MHC-/?2micro-globuHn complex 
rather than the kinetics of the protein-hgand interaction. One would anticipate that 
the peptide dissociation would be related to the overall dissociation of the complex, 
but quite what this relationship is, has not been characterized. 

We may wish to ask the question: which of these measures is best? Unfortunately, 
there is no simple answer. The prima facie response might be "equilibrium con
stant" , but in what context? Kd and IC50 values are probably the most accurately 
measured constants, as they are usually assayed using soluble protein. However, as 
MHCs are membrane bound in their functional context, a value, such as a BL50, 
might be more relevant to processes in vivo. However, BL50 values are typically 
measured using a cascade of antibodies. The multiple-equilibrium that results may 
obscure salient experimental details. Other binding measures are also sometimes re
ported in the context of MHC-peptide interaction. As yet, no clear consensus has 
emerged on the most appropriate type of affinity measurement or assay strategy. It 
remains a prime concern to establish a correlation between these different binding 
measures, so that information-rich measures can work synergistically with those that 
are facile to perform. Moreover, it reinforces the need to establish effective predictive 
methodology that can substitute effectively for experimental assays. 

8.3 The Long and the Short of MHC-peptide Interaction 

Peptide binding to MHCs and TCR binding to peptide-MHC complexes are the key 
biomolecular interactions underlying the recognition process which enables the im
mune system to discriminate properly between proteins of benign origin and those 
produced by pathogens. MHC-mediated recognition of pathogens thus enables the 
immune system to do its work; the importance of these two processes can not be 
underestimated: its success is often what divides life from death. The study of im
munology and vaccinology remains distinctly empirical in nature, yet such peptide 
binding phenomena are as amendable to rigorous biophysical characterisation as any 
other biochemical reaction. 

MHC proteins are grouped into two classes on the basis of their chemical structure 
and biological properties. The two types of MHC protein have related secondary and 
tertiary structure but with important functional differences. Class I molecules are 
composed of a heavy chain complexed to /32-microglobulin, while class H molecules 
consist of two chains (a and P) of similar size. MHC class I molecules present, in the 
main, cytosolic and endogenous peptides, although exogenous antigens can also be 
presented by MHC class I molecules via mechanisms of cross-presentation. Follow
ing the receptor-mediated endocytosis of exogenous antigens by so-called antigen-
presenting cells, such as macrophages and dendritic cells (DCs), antigenic proteins 
pass into endosomes, from where they pass, in turn, to late endosomes and then 
lysosomes, where proteolytically fragmented peptides are bound by MHC class H. 
Other peptides either escape from or are degraded within the endosome and pass 
into the cytoplasm where they enter the familiar compartmentalised class I pathway 



146 Hattotuwagama et al. 

comprising the proteasome, TAP and MHC. Class I MHC is expressed on almost all 
cells in the body and presents a complex population of peptides on the cell surface 
which is dominated by a combination of self and viral peptides. 

MHCs bind peptides, which are themselves derived through the degradation of pro
teins. The proteolytic pathway by which peptides become available to MHCs re
mains complicated and poorly understood. However, MHCs also bind a variety of 
other molecules other than peptides whose sequences are composed of the 20 com
monly occurring amino acids. Peptides bearing diverse post-translational modifi
cations (PTMs) can also form pMHCs and be recognized by TCHs. Such PTMs 
include phosphorylation, glycosylation, and lipidation [Kastrup et al. 2000, Zarling 
et al. 2001]. Additionally, MHCs will also bind other molecules including chem
ically modified peptides, synthetically derived peptide mimetics, and even small 
molecule drug-like compounds [Pichler 2002]. It is now well known that many drug
like molecules exhibit pathological effects through binding to MHCs. Indeed, small 
molecule binding has functional implications in behaviour-modifying odour recog
nition. The modern pharmaceutical industry does not currently favour peptides as 
drug candidates, but it has been proposed recently that a MHC-drug-TCR complex 
may be a suitable approach for developing immunotherapeutic inhibitors of T cell 
mediated processes. 

Both classes of MHC molecule have similar 3-D structures. The MHC peptide-
binding site consists of a /^-sheet, forming the base, flanked by two a-helices, which 
together form a narrow cleft or groove accommodating bound peptides. The principal 
difference between the two classes are the dimensions of the peptide-binding groove: 
in class I it is closed at both ends while both ends of the MHC class II binding 
site are open. This has important implications for the length dependence of MHC 
peptide selectivity. Peptides bound by class I MHCs are perceived to be typically 
relatively short while peptides bound by class II MHCs are, by contrast, essentially 
unconstrained in terms of length. This creates particular problems of its own, which 
we shall examine in more detail below. 

It has long been thought that Class I preferentially bind peptides with sequences 
which are 8-11 amino acids in length. This view is now beginning to be challenged. 
For example, there is increasing experimental evidence that a wide variety of other 
peptide lengths also form stable, high affinity complexes with class I MHC class 
I, including both very short peptides (4-5-mers) and very long peptides (up to 18-
mers). This is in addition to the diverse array of post-translationally modified or 
synthetically treated peptides, all of which give rise to cytotoxic T cells (CTL). This 
view arose partly as a result of crystal structures showing that the length of MHC 
binding site most obviously accommodates peptides of 8-10 amino acids, and partly 
from elution, and other biochemical, studies, which also point to a similar restricted 
spectrum of lengths. 

There is some experimental data to support the binding of short peptide sequences 
("Shortmers") to MHCs. Mouse CTLs recognize MUCl epitopes bound to H-2Kb: 
MUCl-9 (SAPDTRPAP), MUCl-8 (SAPDTRPA), as well as truncated versions: 
SAPDTRP (7-mer), SAPDTR (6mer), and SAPDT (5-mer) [Apostolopoulos et al. 
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2001]. Other possible shortmers which bind claiss I MHC molecules include 3-mers 
(QNH), 4-mers (QNHR, ALDL, PFDL) and 5-mers (RALDL, HFMPT) [Gillanders 
et al. 1997, Reddehase et al. 1989]. Since such observations lie outside normal ex
pectation, and are thus open to question, how such phenomena manifest themselves 
are of not inconsiderable interest. 

Evidence supporting the binding of long peptides sequences to MHC ("Longmers") 
is considerably more abundant and much, much stronger.Indeed, it is so abundant 
and so strong that we will eschew parenthetical results and concentrate instead on 
recent unequivocal crystal data. Crystallographic studies of MHC class I molecules 
revealed similarly bound conformations of MHC ligands, despite significant differ
ences in primary structure. In general, peptides bind to MHC with their N- and C-
termini fixed at either end, and with the central of the peptide bulging out slightly. 
Residues lining the MHC binding groove interact with the peptide, and thus define 
the specificity of the HLA-peptide interaction. Peptides of length 8 or 9 evince a 
more or less invariant conformation, while peptides of length 10 tend to "bulge" in 
the central region of the peptide, with the conformation of the bulged region seen in 
lOmer complexes varying considerably between structures. In all 3 cases, N- and C-
terminal interactions remain essentially unchanged. Such trends are exacerbated as 
the length of bound peptides increases. [Probst-Kepper et al. 2004] report the 1.5A 
crystal structure of the human MHC HLA-B*3501 in complex with a 14mer pep
tide (LPAVVGLSPGEQEY). This 14-mer originates from an alternate open reading 
frame (ORF) of macrophage colony-stimulating factor, which is expressed in several 
tumour lines. Elution studies of tumors demonstrated that the peptide is presented 
naturally and is recognized by CTL [Probst-Kepper et al. 2001]. The crystal struc
ture showed that both the N and C termini of the peptide are embedded in the A 
and F pockets of the MHC peptide binding site, in a similar way to that of an 8mer 
or a 9mer. The centre of the 14mer peptide bulges, in a conformationally flexible 
manner, from the binding groove in an unpredictable way. [Speir et al. 2001] had 
reported earlier the 2.55A crystal structure of a complex between the rat MHC allele 
RTl-A"* and a 13mer peptide (ILFPSSERLISNR), a natural ligand eluted from the 
cell surface, which was derived from a mitochondrial ATPase. More recently, [Ty
nan et al. 2005b, Tynan et al. 2005a] report the 1.5A crystal structure of a 13-mer 
viral epitope (LPEPLPQGQLTAY) bound to the human MHC HLA-B*3508. These 
accounts, which detail crystal structures of "bulged" Longmers, are in contrast to 
earlier reports which describe binding to class I MHC via a C-terminal protrusion 
mechanism: a 10-mer peptide bound to HLA-A*0201 where the additional glycine 
residue extended out from the C-terminus. 

These recent reports are in turn supported by observations at the functional level 
of CTL recognition of Longmers. Reports of human lOmer and l lmer CD8 epitopes 
restricted by class I MHC alleles are commonplace, as are lOmer peptides binding 
to mouse class I. SYFPEITHI is awash with class I peptides that are up to 15 amino 
acids in length in humans and up to 16 amino acids in mice. [Jiang et al. 2002] 
report convincing evidence of a H2-K^-restricted CTL response to a 15mer epitope 
(ELQLLMQSTPPTNNR) from the F protein of respiratory syncytial virus. A 12-
mer peptide (LLLDVPTAAVQA) is known to be processed naturally and presented 
in a HLA-A*0201 restricted manner [Chen et al. 1994]. 12mer C-terminal variants 
of VSV8 have been shown to bind H-2Kb (RGYVYQGLKSGN) [Horig et al. 1999]. 
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Thus, the apparent potency of responses to such Longmers is indicative that peptides 
longer than the norm do not represent a major structural barrier to recognition by 
TCRs. Clearly, then, the evidence, as adumbrated above, suggests strongly that 
the natural repertoire of class I MHC presented peptides is far broader than has 
generally been supposed. 

Although it is increasingly clear that the apparent repertoire of peptide lengths able 
to induce class I restricted CTL responses has widened considerably in recent years, 
most information on class I MHC-peptide binding remains focussed on 9mers and 
HLA-A*0201; there is far more data available for this allele than for any other, and 
by a not inconsiderable margin. It was long ago realised that logistic restrictions 
make exhaustive testing of overlapping peptides unrealistic, making computational 
prediction an attractive option. The first attempts to computerize the identification 
of MHC binding peptides led to the development of motifs characterizing the peptide 
specificity of diflferent MHC alleles. Such motifs - a concept with wide popularity 
amongst immunologists - characterize a short peptide in terms of dominant anchor 
positions with a strong preference for certain amino acids. Probably the first real 
attempt to analyze MHC binding in terms of specific allele-dependant sequence mo
tifs was undertaken by [Sette et al. 1989]. They defined motifs for the mouse alleles 
I-Ad and I-Ed after measuring affinity for a large set of synthetic peptides originat
ing from eukaryotic and prokaryotic organisms, as well as viruses; in addition they 
also assayed a set of overlapping peptides encompassing the entire staphylococcal 
nuclease molecule. [Sette et al. 1994b] quote prediction rates at the 75% level for 
these two alleles. A large number of succeeding papers, both from this group and 
others, have extended this approach to include many other class I MHC alleles. 

Motifs are usually expressed in terms of anchor residues: the presence of certain 
amino acids at particular positions that are thought to be essential for binding. 
For example, human Class I allele HLA-A*0201 has anchor residues at peptide 
positions P2 and P9 for a nine amino acid peptide. At P2, acceptable amino acids 
would be Leucine and Methionine, and at the P9 anchor position would be amino 
acids Valine and Leucine. Primary anchor residues, although generally deemed to be 
necessary, are not sufficient for peptide binding, and secondary anchors, residues that 
are favourable, but not essential, for binding may also be required; other positions 
show positional preferences for particular amino acids. Moreover, the presence of 
certain residues at specific positions of a peptide can have a negative effect on binding 
[Smith et al. 1996b, Southwood et al. 1998, Amaro et al. 1995]. It is possible to 
rationalise apparent preferences expressed within motifs in terms of physico-chemical 
complementarity of peptide structure with the structure of the MHC. Position PI 
corresponds to pocket A of the cleft of the peptide-binding site on HLA-A*0201 
[Saper et al. 1991]. Anchor residues at position 2 and at the C-terminus (position 
9) are seen to be of primary importance for binding, where pocket B interacts with 
the side chain of the residue at position 2. The structure of pocket A is mainly polar 
residues and consists of a network of hydrogen bonding residues. A hydrophobic 
ridge cuts through the binding cleft forcing the peptide to arch between position 5 
and the carboxyl-terminal residue (position 9) which are anchored into the D and 
F pockets in the floor of the cleft [Fremont et al. 1998]. Taking another example: 
human class I allele HLA-B*3501 has anchor residues at position P2 (Pro) and P9 
(hydrophobic or aromatic residues, such as Phe, Met, Leu, He and especially Tyr). 
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Class I mouse MHC alleles also bind diverse peptides, typically 8-10 amino acids 
in length, with each allele exhibiting definite peptide specificity. Prom our work, 
[Doytchinova & Flower 2002b, Doytchinova & Flower 2002a, Doytchinova et al 2002, 
Guan et al. 2003b, Guan et al. 2003a, Hattotuwagama et al. 2004, Doytchinova k, 
Flower 2003] and previous peptide binding experiments, it is clear that the molecule 
binds short peptides, which are most often nonamers [Bjorkman et al. 1987]. The 
crystal structure of several mouse class I molecules hais revealed that the peptide 
binding cleft is also closed at both ends, that the length of the cleft is similar for all 
class I molecules, [Fremont et al. 1998, Zhang et al. 1992, Young et al. 1994, Smith 
et al. 1996b, Smith et al. 1996a] and that the carboxyl-terminal peptide position 
is an anchor residue deeply buried in the F pocket. Analysis of the structure and 
binding results of the H2-K^ and H2-K'' octameric complex reveals that there is a 
strong preference for an aromatic and hydrophobic residues Tyr and Phe (H2-K^) 
and Leu (H2-K^) at positions 3 and 5 and for a strong hydrophobic residue Val 
(H2-K^) and He, Val and Phe (H2-K^) at position 8, which is in accordance to the 
studies of Falk et al., (1991). In H2-K^ the B pocket is large enough to accommodate 
a bulky He residue at position 2, which is in accordance with the crystal structure of 
the antigenic peptide from the ovalbumin complex OVA-8 (SIINFEKL). The anchor 
carboxyl-terminal (position 8) prefers hydrophobic residues, which fall into pocket 
F. 

The motif method is admirably simple and it is straightforward to implement either 
by eye or, more systematically, using a computer to scan through protein sequences. 
However, there are many problems with the motif approach. The most significant of 
which is that the method is, essentially, deterministic: a peptide either binds or does 
not bind. Inspection of sequence patterns from epitopes and non-epitopes shows the 
inadequacies of the motif approach. For example, Table 8.1 gives a list of example 
peptides for human MHC HLA-A*0201 which are both affine and motif-negative, 
that is they possess non-canonical sets of amino acids lying outside established def
initions for A2. There are many more examples of motif-positive peptides which do 
not bind. Even a brief reading of the immunological literature shows that matches to 
motifs produce many false positives, and are, in all probability, producing an equal 
number of false negatives, though peptides predicted to be non-binders are seldom 
screened. The deterministic dependence on the presence of anchor residues is, ar
guably, the most vexatious feature of motifs. Proponents of motifs characterise one or 
more anchor positions as being all important. Anchors are, as we have said, residues 
upon which binding is deemed to depend. This argument, based on observations 
of characteristic sequence patterns evident in pool sequencing and the sequences of 
individual epitopes, holds that only peptides matching a sparse pattern of residues 
can bind. This clearly makes little sense and is utterly incompatible with everything 
we know about molecular binding events. The whole of the biophysical and chemical 
literatures argues against this view. However, rather than review thousands of pa
pers, we might, in the present context, examine evidence within the immunological 
literature. We have already seen that motifs are not consistent with the sequences of 
real epitopes and MHC binders. Moreover, there have been several analyses which 
have addressed this issue directly. [Stryhn et al. 1996] generated all systematic single 
mutants of the 8mer peptide FESTGNLI and observed that mutations at positions 
2 and 8 resulted in the greatest changes in affinity, but that, contrary to expec
tation, few substitutions abolished activity. Thus it is possible to lose canonical 
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anchors without eradicating binding. Likewise, [Doytchinova et al. 2004c] made all 
40 mutations at positions 2 and 9 of a super-binding 9mer peptide that bound to 
HLA-A*0201. Again, only a few residues caused a complete abrogation of affinity 
and about half of these peptides were still sufficiently affine to be potential epitopes, 
with affinities beyond the well known pICso > 6.3 threshold [Sette et al. 1994b].This 
study demonstrates that it is possible to manipulate A2 binding affinity in a rational 
way, raising resulting peptides to affinity levels two orders of magnitude greater than 
previously reported. The study also showed that optimised non-anchor residues can 
more than compensate for non-optimal substitutions at anchor positions. Clearly, 
the whole of a peptide contributes to binding, albeit weighted differently at dif
ferent positions. This is made very clear by data-driven modelling, which we shall 
describe in greater detail below. For class I, and probably also for class II, it is quite 
straightforward to generate high affinity peptides, and affine peptides without non-
canonical anchors, at least for well characterised alleles, with extra affinity arising 
from favourable interactions made by non-anchor residues. 

There is some evidence suggesting that as the MHC binding affinity of a peptide 
rises, the greater the probabiUty that it will be a T cell epitope. The prediction 
of MHC binding is both the best understood and the most discriminating step in 
the presentation-recognition pathway. A pragmatic solution to the as yet unsolved 
problem of what will be recognised by the TCR, and thus activate the T cell, is to 
greatly reduce the number of possible epitopes using MHC binding prediction, and 
then test the remaining candidates using some measure of T cell activation, such as 
T cell killing or thymidine incorporation. 

8.4 A Class Apar t 

As mentioned above, class II MHC molecules are a non-covalent heterodimer. Pep
tides binding to class II MHC molecules are usually 10-25 residues long, with pep
tide lengths of 13-16 amino acids being the most frequently observed [Rognan et al. 
1999, Hunt et al. 1992, Chicz et al. 1992, Chicz et al. 1993]. From X-ray crystallo-
graphic data of MHC class II and TCR-peptide-MHC class II complexes, [Dessen 
et al. 1997, Hennecke & Wiley 2002] it is clear that nine amino acids are bound in 
an extended conformation within the class II binding site. They are not anchored 
at their amino and carboxyl termini, but stretch along the binding groove, with 
residues accommodated by binding pockets along the cleft. However, because the 
two ends of the peptide binding site are both open in class II MHC molecules, 
peptides are, as we have already noted, usually much longer than the minimal 9 
amino acids required for binding. One of the most challenging aspects of the class 
II prediction problem is the initial identification of the core nonameric binding sub
sequence within the much longer peptides, which were typically generated by the 
quasi stochastic process of Cathepsin-mediated proteolysis of endocytosed extracel
lular protein. Various methods have been proposed for this purpose. Implicit in most 
of these efforts are attempts to identify some kind of semi-invariant sequence pat
tern. Such attempts have included the use of conventional sequence alignment pro
grams and hidden Markov models, amongst others. Other methods, such as [Mallios 
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2001, Doytchinova & Flower 2003], have used an iterative approach to identifying a 
binding model. No extant method is wholly successful and this remains a continuing 
challenge. 

Inspired by the relative success of investigations into class I motifs, previous inter
pretations of experimental data, extant within the literature, have suggested that 
class II peptides also have a small number of anchor residues upon which binding 
depends. These anchors are residues of an appropriate type, which must sit at partic
ular spacings along the peptide in order for allele-restricted binding to occur; residues 
at other peptide positions are less constrained. It is seems clear from experimental 
studies of T-cell epitope analogue binding and data from X-ray crystallography, that 
peptides bind to MHC molecules through the interaction of side chains of certain 
peptide residues with pockets situated in the MHC class II peptide-binding site: 
these side-chains extend into discreet pockets within the binding groove [Hennecke 
& Wiley 2002, Fremont et al 1998, Corper et al 2000]. Peptide side-chains form 
favourable (polar, hydrophobic or steric) interactions with MHC side-chains within 
these pockets [Corper et al. 2000]; the most critical determinant of binding, other 
than the presence of appropriate types of side chain, is their relative spacing. The 
side chain at peptide position PI binds into a deep pocket while four shallow pockets 
bind side chains at peptide positions 4, 6, 7 and 9. The side chains at positions 2, 
3, 5 and 8 point towards the T cell receptor. 

Results from data-driven modelling are consistent with an emerging view of MHC 
peptide interactions: motifs are an inadequate representation of the underlying pro
cess of binding. This is likely to characterise class II binding as much as it obviously 
does for class I. For example, [Liu et al. 2002] showed that for I-A^ it was possible 
for a peptide bearing alanines to bind to its four main pockets - which correspond 
to positions PI , P4, P6 and P9 and which usually bind larger peptide side-chains 
- with compensatory interactions, made by residues at other positions, maintain
ing the overall affinity. Both structure-driven and data-driven modelling of class II 
binding is strongly suggestive that the relative contributions, of particular residues, 
to binding are spread more evenly through the peptide than is generally supposed, 
rather than being concentrated solely in a few so-called anchor positions. 

Complicated as this view of class II binding may appear, the situation may be 
even more complex. For example, it has been suggested that different MHC class 
II molecules may bind the same peptide in multiple binding registers, whereby the 
peptide is displaced longitudinally within the binding groove with side chains be
ing bound by different pockets [Li et al. 2000, McFarland et al. 1999, Vidal et al. 
2000]. Two main alternative scenarios have been proposed hitherto [Bankovich et 
al. 2004]: binding of the same peptide in different registers by the same or by dif
ferent alleles. The more common second alternative is well demonstrated [Li et al. 
2000, Vidal et al. 2000] and results from minor polymorphic differences in the amino 
acid residue composition of the binding groove. In the DRB5 complex, the large PI 
pocket accommodates Phe from the peptide and He occupies the shallow pocket at 
P4. However, in the DRBi allele, the small pocket at P I is occupied by Val shifting 
the peptide to the right, while Phe occupies a deeper pocket at P4. This also causes 
certain peptide side-chains, which are orientated toward the TCR, to change [Li 
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et al. 2000]. Unequivocal evidence supporting the former alternative is somewhat 
scarce: there are few, if any, proper examples of exactly the same peptide binding 
in different registers to exactly the same MHC molecule. 

Logistical difficulties inherent in deciding upon the binding register and the weak 
motif-dependence are not the only problems which confound the study of class II 
peptide-MHC binding. A further important issue is the influence of flanking residues 
on affinity and recognition: [Arnold et al. 2002] identified residues at +2 or -2, relative 
to the core nonamer, as important for effective recognition by T-cells. [Godkin et 
al. 2001] also looked at how flanking regions influence immunogenicity, noting that 
active class II peptides show residue enrichment outside of the central core regions, 
but conclude that, for HAL-DR2 at least, such phenomena result from conferred 
preferences for both cellular processing and MHC-mediated T cell activation. Further 
studies showed similar patterns in another nine HLA alleles, where C-terminal basic 
residues were as highly conserved as previously identified N-terminal prolines. This, 
and other issues - such as do certain class II epitopes bulge as class I peptides do 
or can a class II ligand bind so that the full 9 positions in the class II groove are 
not used? - makes it clear that class II peptide binding is potentially an order of 
magnitude more difficult a problem to solve. 

8.5 Empirical and Artificial Intelligence Approaches 

In order to quantify adequately the affinities of different MHCs for antigenic pep
tides, many different methods have been developed. It is possible to group these 
methods together thematically, based on the kind of underlying techniques they 
employ, and we shall endeavour to review them in this fashion below. As a prelim
inary, it is perhaps appropriate to mention some of the underlying issues involved. 
A widely used conceptual simplification, often used to help combine this bewilder
ing set of binding measures, is to reclassify peptides as either Non-binders or as 
High-binders. Medium binders, and Low binders. For example, the schema used 
by [Brusic et al. 1998] classifies binders using these criteria: Non-Binders > lOuM, 
lOuM > Low Binders > lOOnM, lOOnM > Medium Binders > 1 nM, High Binders 
< InM. Such broad schemes also allow for the inherent inaccuracy in MHC binding 
measurements. 

While useful in themselves, binding motifs are, as we have said, very simplistic. 
They are not quantitative and their over-reliance on anchor positions can lead to 
unacceptable levels of false positives and false negatives. Alternative approaches 
abound. The different types have, as one might expect, different strengths and dif
ferent weaknesses. The strategy adopted by many workers is to use data from binding 
experiments to generate matrices able to predict MHC binding. For want of a bet
ter term, we refer to these approaches as experimental matrix methods, as most 
such methods use their own measured data and relatively uncomplicated statisti
cal treatments to produce their predictive models. For example, [Rothbard et al. 
1994], developed a method to predict the strength of binding to human Class II 
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allele HLA DRB1*0401. They assumed, as do many other workers, that peptides of 
the same length bind similarly and that the contribution made by each side chain 
is independent and can be treated as a simple sum of residue interactions. Within 
the context of an otherwise polyalanine backbone, the contributions made by the 
central 11 positions, of a 13 amino acid peptide, were quantified by measuring the 
effects of changes in amino acid identity at each position within the peptide. 

An alternative strategy is the use of positional scanning peptide libraries (PSPLs) to 
generate such matrices. A number of such studies have aimed to investigate MHC-
peptide interaction or to evaluate how variations in peptide sequence alter TCR 
recognition and T cell activation. One of the most recent of these is also one of the 
most promising: [Udaka et al. 2001] have used PSPLs to investigate the influence of 
positional sequence variation on binding to the mouse Class I alleles Kb, Db, and 
Ld. Prom their analysis a program that could score MHC-peptide interaction was 
developed and used to predict the experimental binding of an independent test set. 
Their results showed a linear correlation but with substantial deviation. About 80% 
of peptides could be predicted within a log unit. 

There are many other papers developing methods of this ilk. Though valuable con
tributions, it is clear that that they betray a series of important limitations. Firstly, 
they do not, in general, constitute a systematic approach to solving the MHC-peptide 
binding problem. Rather, they are a set of different - essentially individual, inde
pendent, and inconsistent - solutions to the same, or nearly the same, problem. The 
measures of binding are different, the degree of quantitation is different for different 
methods and they also lack subsequent applications corroborating their predictive 
power. 

A further step forward from motifs came with the work of [Parker et al. 1994]. 
This method, which is based on regression analysis, gives quantitative predictions 
in terms of half-lives for the dissociation of /^2-microglobulin from the MHC com
plex. Moreover, apart from its intrinsic utility, one of the other important con
tributions of this approach is that it was the first to be made available on-line 
(http://bimas.dcrt.nih.gov/molbio/hla_bind/). 

[de Groot et al 2001] have developed several computer programs, principally EpiMer 
and EpiMatrix, and have used them in various practical applications, with a par
ticular focus on HIV. EpiMatrix and EpiMer are pattern-matching algorithms that 
attempt to identify putative MHC-restricted T cell epitopes as a preliminary to con
structing multi-epitope vaccines. These algorithms are themselves based on matrix 
representations of positional amino acid preferences within MHC-bound peptides. 
The general utility of these methods has been limited by the commercial exploitation 
of the EpiMatrix and EpiMer technology. Hammer and co-workers have developed 
an alternative computational strategy called TEPITOPE [Sturniolo et al. 1999]. Al
though the program can provide allele specific predictions, its main focus is on the 
identification of promiscuous Class II binding peptides. One of the most interesting 
aspects of Hammer's work has been the development of so-called virtual matrices, 
which, in principal, provides an elegant solution to the problem of predicting bind
ing preferences for alleles for which we do not have extant binding data. Within the 
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three-dimensional structure of MHC molecules, binding site pockets are shaped by 
clusters of polymorphic residues and thus have distinct characteristics in different 
alleles. Each pocket can be characterized by "pocket profiles," a representation of 
all possible amino acid interactions within that pocket. A simphfying assumption 
is that pocket profiles are, essentially, independent of the rest of the binding site. 
A small database of profiles wais sufficient to generate, in a combinatorial fashion, 
a large number of matrices representing the peptide specificity of different alleles. 
This concept has wide applicability and underlies, for example, attempts to use fold 
prediction methods to identify peptide selectivity. 

A number of groups have used artificial intelligence techniques, such as artificial 
neural networks (ANNs) and hidden Markov models (HMMs), to undertake the 
prediction of peptide-MHC affinity. ANNs and HMMs, are, for slightly different ap
plications, the particular favourites when bioinformaticians look for tools to build 
predictive models. However, the development of ANNs is often complicated by sev
eral adjustable factors whose optimal values are seldom known initially. These can 
include, inter alia^ the initial distribution of weights between neurons, the number 
of hidden neurons, the gradient of the neuron activation function, and the training 
tolerance. Other than chance effects, neural networks have, in their application, suf
fered from three kinds of limiting factor: over-fitting, overtraining (or memorization), 
and interpretation. As new, more sophisticated neural network methods have been 
developed, and basic statistics appHed to their use, over-fitting and overtraining have 
been largely overcome. Interpretation, however, remains an intractable problem. 

Notwithstanding these potential problems, many workers have adopted an ANN-
based strategy. [Bisset & Fierz 1993] were amongst the first to use ANN in this 
context, when they trained an ANN to relate binding to the Class II allele HLA-DRl 
to peptide structure. [Adams & Koziol 1995] used ANN to predict peptide binding to 
HLA-A*0201. They took a dataset of 552 nonamers and 486 decamers and generated 
a predictive hit rate of 0.78 for classifying peptides into two classes, one showing good 
or intermediate binding and another demonstrating weak or non-binding. [Gulukota 
et al. 1997, Gulukota Sz DeLisi 2001] developed two complementary methods for 
predicting binding of 463 9mer peptides to HLA-A*0201. One method used an ANN 
and the other used statistical parameter estimation. They found the ANN was better 
than motif methods for rejecting false positives, while their other alternative method 
was superior for eliminating false negatives. [Milik et al. 1998] used ANN to predict 
binding to the mouse Class I molecule Kb based on a training set of binding and 
nonbinding peptides derived from a phage display library. While it was easy to 
identify strongly affine peptides with a number of different methods, they found that 
ANNs predicted medium binding peptides better than simple statistical approaches. 

[Mamitsuka 1998] has applied supervised learning to the problem of predicting MHC 
binding using an HMM as his inference engine. In a cross-validated test, the discrim
ination exhibited by his supervised learning method is usually approximately 2-15% 
better than other methods, including back propagation neural networks. Interest
ingly, his HMM model allowed the straightforward identification of new, non-natural 
peptide sequences that have a high probability of binding. 
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8.6 QSAR approaches 

QSAR analysis, as a predictive tool of wide applicability, is one of the main cor
nerstones of modern cheminformatics and increasingly, bioinformatics. Quantitative 
Structure-Activity Relationship (QSAR) methods are now establishing themselves 
as immunoinformatic techniques useful in the quantitative prediction of peptide-
protein affinity. QSAR methods have long proved themselves to be powerful tools for 
the prediction and rationalization of structure-property relationships within physical 
science. The fundamental objective of QSAR is to take a set of molecular structures 
(peptides in this case), for which a biological response has been measured (an IC50 
or other affinity measure), and, using some statistical method (Partial Least Squares 
or other robust multivariate method), to relate this measured activity to some de
scription of their structure. We now review how we have deployed QSAR techniques 
in immunological research. Our QSAR-inspired approaches to the development of 
immunoinformatic methods - the Additive method and its extension, ISC-PLS, and 
the CoMSIA method - were generated for 28 human and mouse class I and class II 
alleles. Relevant statistical parametersare given in Tables 3-5. 

Cross Validation: QSAR style 

Cross-Validation (CV) is a reliable technique for testing the predictivity of models. 
With QSAR analysis in general and PLS methods in particular, CV is a standard 
approach to validation. CV works by dividing the data set into a set of groups, 
developing several parallel models from the reduced data with one or more of the 
groups excluded, and then predicting the activities of the excluded peptides. When 
the number of excluded groups is the same as the number in the set, the technique 
is called Leave-One-Out Cross-Validation (LOO-CV). The predictive power of the 
model is assessed using the following parameters: cross-validated coefficient (q^) and 
the Standard Error of Prediction (SEP), which are defined in equations 11 and 12. 

q' = 1.0 - | \ ^ 7 r " ' ^ " ' " T r " ' " ^ ' ' C Or simplified to q' = 1.0 - ^ ^ ^ [10] 

Where plCso(pred) is a predicted value and plC^o^exp) is an actual or experimental 
value. The summations are over the same set of pICso values. PRESS is the PRe-
dictive Error Sum of Squares and SSQ is the Sum of Squares of pIC5o(ea;p) corrected 
for the mean. 

SEP = y ^ p P [11] 

Where p is the number of the peptides omitted from the data set. The optimal 
number of components (NC) resulting from the LOO-CV is then used in the non-
cross validated model which was assessed using standard MLR validation terms, 
explained by variance r^ and Standard Error of Estimate (SEE) which are defined 
in equations 13 to 14. 

[12] 
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; = 

where Ypred is the predicted, Yobs the observed, and Y is the average dependent 
variable, in this case IC50 values. 

SEE =^ y/^M [13] 

Where n is the number of peptides and c is the number of components. In the present 
case, a component in PLS is an independent trend relating measured biological ac
tivity to the underlying pattern of amino acids within a set of peptide sequences. 
Increasing the number of components improves the fit between target and explana
tory properties; the optimal number of components corresponds to the best q^. Both 
SEP and SEE are standard errors of prediction and assess the distribution of errors 
between the observed and predicted values in the regression models. 

8.6.1 2D QSAR techniques: Additive and ICS-PLS methods 

We have recently developed an immunoinformatic technique for the prediction of 
peptide-MHC affinities, known as the Additive Method, a 2D-QSAR technique which 
is based on the Free-Wilson principle, [Kubinyi & Kehrhahn 1976] whereby the pres
ence or absence of groups is correlated with biological activity. For a peptide, the 
binding affinity is thus represented as the sum of amino acid contributions at each 
position. We have extended the classical Free-Wilson model with terms, which ac
count for interactions between amino acids side chains. The Additive method uses 
Partial Least Squares (PLS), an extension of Multiple Linear Regression (MLR) 
(Wold, 1995) to identify the sequence dependence of peptide binding specificity for 
various class I MHC alleles with known binding affinities. The binding affinities were 
originally assessed by a competition assay based on the inhibition of binding of the 
radiolabeled standard peptide to detergent-solubilised MHC molecule [Ruppert et 
al. 1993, Sette et al. 1994a] and are usually expressed as IC50 values. Extracted 
IC50 values were first converted to logfl/ICso] values (or -logiopCso] or pICso) and 
used as the dependent variables in a QSAR regression. pICso can be related to 
changes in the free energy of binding: AGbind oc -RT In ICso- The values were 
predicted from a combination of the contributions (p) of individual amino acids at 
each position of the peptide and used as the dependent variables in a QSAR anal
ysis. Using literature data, we applied the Additive Method to peptides binding to 
several human class I alleles [Doytchinova et al. 2002, Guan et al. 2003b, Hatto
tuwagama et al. 2004, Doytchinova & Flower 2003]. Peptide sequences and their 
binding affinities were obtained from the AntiJen database, a development of Jen-
Pep [URL: http://www.jenner.ac.uk/AntiJen] [Blythe et al. 2002, McSparron et al. 
2003]. Compilations of quantitative affinity measures for peptides binding to class I 
and class II MHCs were carried out with known binding affinities (IC50). 
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A program was developed to transform the nine amino acid peptide sequences into 
a matrix of 1 and 0. A term is equal to 1 when a certain amino acid at a certain 
position or a certain interaction between two side chains exists and 0 when they 
are absent. For example, 180 columns account for the amino acids contributions 
(20aa X 9 positions); 3200 columns account for the adjacent side chains, or 1-2 
interactions (20 x 20 x 8); and 2800 columns account for every second side chain, 
or 1-3 interactions (20 x 20 x 7). As these two models were roughly equivalent in 
terms of statistical quality, we applied the principle of Occam's razor and sought the 
simplest explanation, choosing the amino acids only model, which will be discussed 
in this study. The matrix was assessed using PLS. The method works by producing 
an equation or QSAR, which relates one or more dependent variables to the values 
of descriptors and uses them as predictors of the dependent variables (or biological 
activity), [Wold 1995]. The IC50 values (the dependent variable y) were represented 
as negative logarithms (pICso). The predictive ability of the model was validated 
using "Leave-One-Out" Cross-Validation (LOO-CV) method. 

The generated models (n=30-335) as shown in Table 8.8 has an acceptable level 
of predictivity: Leave-One-Out Cross-VaHdation (LOO-CV) statistical terms - SEP 
and q^ - ranged between 0.522-1.005 and 0.317-0.652 respectively. The non-cross 
validated statistical terms NC, SEE and r^ ranged between 2-9, 0.085-0.456 and 
0.731-0.997 respectively. An extended motif, as defined by the class I models is 
summarised in Table 8.8 showing anchor and non-anchor residues related with strong 
and weak binding residues. For simplicity, the quantitative contributions of amino 
acids at each position for the class I mouse alleles are shown in Figure 8.8. 

The 2D-QSAR additive method has been applied to the peptide binding specificities 
of the A3 superfamily human class I alleles: A*1101, A*0301, A*3101 and A*6801. 
Sequence analysis showed that only 11 of the residues inside the binding pockets 
are polymorphic. A good, if incomplete, consensus was found in the preferences at 
the primary anchor positions 2 and 9. Thr and short hydrophobic residues such as 
Ala and He were favoured at P2 and nearly all the peptides bound to A3 alleles had 
positively charged residues Arg or Lys at the C-terminus. The amino acids involved 
in peptide binding are similar in HLA-A2 and the A3 family. Pocket B interacts with 
the side chain of the residue at position 2, which was one of the anchor positions in 
nearly all the MHC class I alleles. Most of the amino acids in pocket B are conserved 
in the A2 and A3 families; both families accept hydrophobic residues. The amino 
acid at sequence position 9 of the MHC protein is important in peptide binding in 
the two families. Alleles with small to medium sized residues (Phe9 or Thr9) were 
able to accept residues with long side chains such as Leu, such as A*3101, A*0301 
and A*0201. On the other hand, only small residues such as Ala and Val, could bind 
to A*6801, A*1101 and A*0206, all of which had the larger residue Tyr9. The five 
residues that directly interacted with the peptide in the F pocket are identical in 
both the A3 family and HLA-B27 (Leu81, Aspll6, Tyrl23, Thrl43 and Trpl47). Arg 
and Lys bound to pocket F and interacted with negatively charged residues Aspll6 
or Asp77 in both the A3 family and HLA-B27. B27 had been shown to accept 
hydrophobic residues such as Leu, Ala and Tyr because of their interaction with 
Leu81, Tyrl23, Thrl43 and Trpl47 in the binding pocket [Jardetzky et al. 1991]. In 
the present study, the specificity at position 9 was restricted to Arg and Lys only; 
both Ala and Tyr had deleterious effects on peptide binding. This suggests a possible 
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difference in the conformation of the binding pocket in spite of sequence similarity. 
Also, this may be the result of a change in conformation after the binding of other 
amino acids in the peptide. A peptide-binding motif for the HLA-A3 superfamily has 
been defined previously by [Sidney et al. 1996b] and [Rammensee et al. 1995]. Some 
useful similarities can be found on comparing the present motif with those defined 
by the above two groups. The amino acid preferences for the primary anchor residues 
are similar. All the motifs show preference for Arg and Lys at position 9 and have a 
preference for various hydrophobic residues at position 2, such £is He and Thr. The 
preferences for secondary anchor residue positions 3 and 7 in the three motifs are 
hydrophobic amino acids such as Phe. 

The amino acid contributions to the affinity of peptides binding to the A2 fam
ily: A*0201, A*0202, A*0203, A*0206 and A*6802 alleles using the Additive-PLS 
Method has also been analysed quantitatively. Certain discrepancies between A*6802 
and A*02 molecules concerning the amino acid preferences at P1-P9 were seen in 
the present study. These discrepancies throw doubt on whether the A*6802 allele 
belongs to the A2-supertype. The sequence comparison showed that there are only 
one or two differences in the residues forming the 6 pockets of A*0201, A*0202, 
A*0203 and A*0206 molecules. The number of these differences between A*6802 
and A*02 molecules is seven residues. Five of them concern pockets A, B and C and 
are so substantial that they alter the amino acid preferences at the primary anchor 
P2 and the secondary anchors PI and P6. The preferred Val and Thr for P2 brings 
the A*6802 allele closer to the A3-supertype [Sidney et al. 1996b] rather than to 
the A2-one. But the A3 supermotif requires positively charged residues, such as Arg 
and Lys, at the C-terminus, [Sidney et al. 1996b] which is not true in the case of 
the A*6802 allele. Obviously, A*6802 is an intermediate allele standing between A2 
and A3 supertypes: in anchor position 2 it is closer to A3 and in anchor position 9 
it is nearer to A2. Residues identified as preferred for two or more A*02 molecules, 
without being deleterious for any molecule, are considered as preferred. Residues 
identified as deleterious for two or more molecules are considered as deleterious in 
the common motif. The expansion concerns all positions and especially the anchor 
P2. 

The Additive-PLS results for the mouse alleles are in good agreement with previous 
studies of the preferred primary anchor positions: 5 and 9 (nonamers); 2, 5 and 
8 (octamers - H2-K^ and H2-K'', respectively). All three models also agree with 
previous analyses of the preferred residue type at the anchor positions. For H2-D^: 
Asn at position 5 and Leu at position 9; for H2-K^: Phe at position 5 and Val at 
position 8; and for H2-K^: Glu, Pro, Gly (best three favoured residues) at position 
2 and He, Val, Phe (best three favoured residues) at position 8. The nonameric and 
octameric alleles show both similarities and differences in amino acids preferred at 
various binding positions. Preferences for primary anchors show certain similarities: 
all models exhibit some preference for small amino acids (H2-D^ (Asn), H2-K^ (Val) 
and H2-K^ (Pro, Ala)), while C-terminal amino acids are strongly hydrophobic: H2-
D^ (Leu), H2-K^ (Val) and H2-K'' (He, Val). The most noticeable difference between 
the nonameric and octameric alleles is at position 5, where H2-D^ exhibits a prefer
ence for polar Asn, while H2-K^ shows a preference for Phe (aromatic hydrophobic 
residue) and H2-K^ for Pro (small amino acid residue). 
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8.6.2 Iterative Self-Consistent (ISC) Algorithm - Class II Alleles 

We have examined a recently developed bioinformatics method: the Iterative Self-
Consistent (ISC) Partial Least Squares (PLS)-based Additive Method, which was 
applied to the prediction of class II Major Histocompatibility Complex (MHC)-
peptide binding affinity. We have shown previously that ISC is a reliable, quantita
tive method for binding affinity prediction ([Doytchinova k. Flower 2003, Doytchi-
nova et al. 2002, Guan et al. 2003b], developing a series of quantitative, systematic 
models, based on literature IC50 values. For each set of class II alleles, peptide lengths 
of 10 to 25 were obtained from the AntiJen database. We now address binding to 
class II human and mouse alleles for peptides of up to 25 amino acids in length. 
The ISC additive method assumes that the binding affinity of a large peptide is 
principally derived from the interaction, with an MHC molecule, of a continuous 
subsequence of amino acids within it. The ISC is able to factor out the contribution 
of individual amino acids within the subsequence, which is initially identified in an 
iterative manner. 

The method works by generating a set of nonameric sub-sequences extracted from 
the parent peptide. Values for pICso corresponding to this set of peptides were 
predicted using PLS and compared to the experimental pICso value for each parent 
peptide. The best predicted nonamer were selected for each peptide i.e. those with 
the lowest residual between the experimental and predicted pICso- LOO-CV was 
then employed to extract the optimal number of components, which was then used 
to generate the non-cross-validated model. Each new model is built from the chosen 
set of optimally scored nonamers. By comparing the new set of peptide sequences 
with the old set and if the new set is different, the next iteration is begun. The 
process is repeated until the set of extracted nonameric peptide sequences identified 
by the procedure have converged. The resulting coefficients of the final non-cross 
validated model describe the quantitative contributions of each amino acid at each 
of the nine positions. An example coefficient matrix for the I-A^ allele is shown in 
Table 8.8. 

The generated models (n=44-185) as shown in Table 8.8 has an acceptable level 
of predictivity: Leave-One-Out Cross-Validation (LOO-CV) statistical terms - SEP 
and q^ - ranged between 0.418-0.816 and 0.649-0.925 respectively. The non-cross 
validated statistical terms NC, SEE and r^ ranged between 4-8, 0.051-0.180 and 
0.967-0.999 respectively. Convergence was ranged between the 4th and 17th itera
tion. An extended motif, as defined by the class I models is summarised in Table 
8.8 showing anchor and non-anchor residues related with strong and weak binding 
residues. 

Our iterative method is different to the manual identification of anchor-based mo
tifs by visual inspection. Such methods are intrinsically tendentious, arbitrary, sub
jective, and potentially inaccurate. Our method, which is, however, by no means 
perfect, is, by contrast, an objective and unsupervised approach. It is dependent, 
however, on the quantity and degeneracy of the data itself, and also upon its quality. 
The ISC algorithm described above combines an iterative approach to selecting the 
best predicted binders with PLS, a robust multivariate statistical tool for model 
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generation. The ISC method is universal in that it can be used for any peptide-
protein binding interaction where the peptide length is unrestricted but the binding 
is limited to a fixed, if unknown, part of the peptide. Implementation is relatively 
uncomplicated, the method executes quickly, and its interpretation is straightfor
ward. 

8.7 3D QSAR methods 

8.7.1 Comparative Molecular Similarity Index Analysis (CoMSIA) 

Three-dimensional QSARs are a technique of incalculable value in identifying corre
lations between ligand structure and binding affinity. This value is often enhanced 
greatly when analysed in the context of high-resolution ligand-receptor structures. 
In such cases, enthalpic changes - van der Waals and electrostatic interactions -
and entropic changes - conformational and solvent mediated interactions - in ligand 
binding can be compared with structural changes in both ligand and macromolecule, 
providing insight into the binding mechanism [Klebe et al. 1994, Klebe & Abraham 
1999]. Although there are many molecular descriptors that account for free energy 
changes, 3D-QSAR techniques which use multivariate statistics to relate molecu
lar descriptors in the space around to binding affinities, have become pre-eminent 
because of their robustness and interpret ability [Bohm et al. 1999]. In the case of 
CoMSIA (Comparative Molecular Similarity Index Analysis), a Gaussian-type func
tional form is used so that no arbitrary definition of cut-off threshold is required 
and interactions can be calculated at all grid points. The obtained values are eval
uated using PLS. CoMSIA allows each physicochemical descriptor to be visualised 
in 3D using a map, which donates binding positions that are either "favoured" or 
"disfavoured". 

Recently, CoMSIA has been used to produce predictive models for peptide bind
ing to human MHCs: HLA-A*0201 [Doytchinova & Flower 2002b] and the HLA-A2 
and HLA-A3 supertypes [Doytchinova & Flower 2002a, Guan et al. 2003a]. In this 
study, we show how CoMSIA has been applied to some of these class I MHC al
leles. These models were used to evaluate both physicochemical requirements for 
binding, and to explore and define preferred amino acids within each pocket. The 
explanatory power of such a 3D-QSAR method is considerable, not only in its direct 
prediction accuracy but also in its ability to map advantageous and disadvantageous 
interaction potentials onto the structures of the peptides being studied. The data is 
highly complementary to the detailed information obtained from crystal structures 
of individual peptide-MHC complexes. 

The 12 alleles, all peptides were built and aligned in three dimensions. Wherever 
possible an X-ray crystallographic structure for the nonameric/octameric peptide 
binding to the various class I alleles was chosen as a starting conformation. Us
ing the crystallographic peptide as a template, all the studied peptides were built. 
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and then subjected to an initial geometry optimisation using the Tripos molecular 
force field and charges derived using the MOPAC AMI Hamiltonian semi-empirical 
method [Dewar et al. 1985]. Molecular alignment was based on the backbone atoms 
of the peptides, which was defined as an aggregate during optimisation. The pep
tides were placed within individual 3D grids. The final settings for the three models 
are shown in Table 8.8. The generated models (n=30-236) as shown in Table 8.8 
has an acceptable level of predictivity: Leave-One-Out Cross-Validation (LOO-CV) 
statistical terms - SEP and q^ - ranged between 0.443-0.889 and 0.385-0.700 respec
tively. The non-cross validated statistical terms NC, SEE and r^ ranged between 
4-12, 0.071-0.411 and 0.867-0.991 respectively. 

To generate CoMSIA coefficient contour maps for each allele, which describes the 
relationship between the binding affinity and each physicochemical descriptor, three 
non-cross validated "all fields" models were created based on the five physicochem
ical descriptors (Steric, Electrostatic, Hydrophobic, Hydrogen Bond Donor and Ac
ceptor). Table 8.8 shows a summary of the position specificities between the physico-
chemical descriptors and peptides positions for the A2 supermotif and class I mouse 
alleles. CoMSIA analysis for each allele was carried out using Partial Least Squares 
(PLS) [Young 2001] and models were then validated via the Leave-One-Out Cross-
Validation method as previously described. 

The motif of HLA-A3 superfamily includes main anchor positions 2 and 9 [Zhang 
et al. 1993]. Peptides bound to members of the A3 family usually had a positively 
charged residue—Arginine or Lysine—at the C terminus, and a variety of hydropho
bic residues at position 2. It was found that steric bulk was favoured at position 2 
for A*0301 and A*3101 but disfavoured in A*1101 and A*6801 models. The study 
of crystal structures of MHC molecules showed that the residue at peptide position 
2 bound in pocket B [Saper et al. 1991, Madden et al. 1991]. There are different 
residues lining pocket B in the different MHC-A3 molecules: Tyr9 in A* 1101 and 
A*6801, Phe9 in A*0301 and Thr9 A*3101 [Schonbach et al. 2000]. This means more 
space in pocket B for A*0301 and A*3101, allowing them to accommodate larger 
side chains. Electrostatic potential, hydrophobicity and hydrogen bond acceptance 
maps were very varied at this position. This was in good agreement with the broad 
spectrum of amino acids observed at this position, from the bulky hydrophobic Leu 
to the small polar Thr. The most important property for the amino acid at posi
tion 9 was hydrogen-bond donor ability. It was favoured by A*6801 and A*3101, 
and was disfavoured by A* 1101. For A*0301 were found areas of favoured and dis
favoured hydrogen bond donor groups at this position. In some cases, the change 
of Lys to the larger residue Arg could affect the expression of the molecule [Zhang 
et al. 1993]. Results from the present study suggested the interaction between the 
residue at peptide position 9 and the MHC molecule may play an important role. 
The side chain of larger basic residue Arg could extend to the bottom of the pocket 
F of A*6801 and A*3101, forming complex stabilising hydrogen bonds with residues 
at the bottom of the pocket. 

Among the secondary anchors, positions 1, 3, 5, 6 and 7 were of great importance. 
The common favoured property for position 1 was hydrogen-bond donor/acceptor 
ability. Hydrogen-bond donor groups with negative electrostatic potential were pre-



162 Hattotuwagama et al. 

ferred at position 3 for three of the alleles. [Sidney et al. 1996b] found that peptides 
with an aromatic residue, like Tyr, Phe and Trp, had a 31-fold increase in binding 
affinity to A*0301. Bulky side chains with negative electrostatic potential were pre
ferred at position 5. Hydrogen-bond donors and acceptors were disfavoured here. Hy-
drophilic amino acids capable of forming hydrogen bonds were well accommodated 
at position 6. The only common favoured property for position 7 was hydropho-
bicity. Positions 4 and 8 face the T-cell receptor, [Silver et al. 1992], but can still 
contribute to the affinity. Hydrogen-bond donor ability was important for position 
4. Steric bulk and negative electrostatic potential were favoured at position 8. 

Looking at the CoMSIA results for the mouse alleles, we see that with the H2-
D^allele, steric bulk is favoured with the side chains of positions 3 and 6 falling into 
pockets D and C respectively. For the electrostatic potential field, the alkyl side chain 
of position 1 falls into pocket A which consists of Valine and Serine residues [Saper 
et al. 1991]. At position 2, where the side chain falls into pocket B, electrostatic 
potential interaction is favoured [Saper et al. 1991]. In the remaining positions there 
are no favourable electrostatic potential interactions. There is a strongly favoured 
hydrophobic interaction at position 8 where the side chain is solvent exposed and 
contacts the T cell. The major favoured interactions of the hydrogen bond donor 
fields are found at position 1 and across the peptide back bone between position 3 
and 4. The hydrogen bond acceptor map shows position 2 to be favoured and, to a 
lesser extent, at positions 5 and 7. 

For H2-K^allele, steric bulk is favoured at positions 1, 3, 4 and 5. The side chain 
at position 1 makes a weak electrostatic interaction; while at position 2 the elec
trostatic potential map indicates that aromatic-type residues, such as Tyr or Phe, 
are well tolerated. This is in good agreement with experimental data [Ruppert et 
al. 1993, Parker et al. 1994]. There is no major interaction between side chains at 
position 3 and pocket D indicated by our model, and in the remaining positions 
there are no clear favourable electrostatic interactions. The hydrophobic interaction 
field identifies a favourable interaction at positions 3 and 5. Pocket D is a hydropho
bic cavity and amino acids such as Tyr and He are well-tolerated here which would 
significantly deepen the depth and volume of Pocket D [Fremont et al. 1998]. The 
major favoured interactions of the hydrogen bond donor fields are found at positions 
1, 3 and 4 (pockets A, D and the "flag" pocket, respectively), [Saper et al. 1991] 
with a major disfavoured interaction found at position 6 (pocket C). The hydrogen 
bond acceptor map has favoured interactions at positions 1 and 4, pocket A and 
the "flag" pocket respectively, but major disfavoured interactions between the side 
chain positions 3 and 5. 

For the H2-K^ allele, steric bulk field is favoured at positions 1, 7 and 8. There is 
no favourable electrostatic interaction at position 1, while at position 2 electrostatic 
potential is favoured. Position 3 falls into pocket D but makes little interaction 
with the H2-K'' allele. In the remaining positions there seems to be no discernibly 
favoured interactions. Hydrophobic interaction shows a major disfavoured interac
tion at position 2 covering the whole side chain. The only favoured interaction in 
the hydrogen bond donor map in the H2-K^ allele lies between positions 7 and 8. 
The main disfavoured interaction is found at position 2. Within the hydrogen bond 
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acceptor map, there is a strong disfavoured interaction between the side chains at 
positions 2 and 3. 

8.8 Discussion 

In this chapter, we have attempted to do two things: to explore the complex and 
perplexing nature of peptide-MHC binding and also to explore our faltering steps to 
predict it. We say faltering, because present prediction methods, based on available 
data, are still some way from addressing all aspects of the problem. Why is this? 
One of the principal reasons concerns the nature of the data we are trying to predict. 
Bias within it places extreme strictures upon the generality and interpretability of 
any models derived from it. In general, for MHC-peptide binding experiments, the 
sequences of peptides studied are indeed very biased in terms of amino acid compo
sition, often favouring hydrophobic sequences. This arises, in part, from a process of 
pre-selection processes that typically results in self-reinforcement. Binding motifs are 
often used to reduce the experimental burden of epitope discovery. Very sparse se
quence patterns are matched and the corresponding subset of peptides tested, with 
an enormous reduction in sequence diversity. Nonetheless, the peptide sets which 
are analysed by immunoinformaticans are still much larger than those typical in the 
pharmaceutical literature. The peptides themselves are physically large in them
selves, and their physical properties are extreme. They can be multiply charged, 
zwitterionic, and/or exhibit a huge range in hydrophobicity. Affinity data itself is 
often of an inherently inferior quality: multiple measurements of the same peptide 
may vary by several orders of magnitude, some values are clearly wrong, a mix of 
different standard peptides are used in radioligand competition assays, experiments 
are conducted at different temperatures and over different concentration ranges. We 
are also performing a meta-analysis: almost certainly forcing many distinct binding 
modes into a single QSAR model. 

Compared to such caveats concerning the quality of data, concerns about parame
terization seem pale by comparison. Nonetheless, one may also feel justifiable unease 
about aspects of the methodology used. No method is perfect, nor, in the present 
context, are they ever likely to be. One principal criticism of most statistical and 
artificial intelligence methodology is the chance of over-fitting models. Usually the 
data block has too few degrees of freedom for a completely robust analysis to be un
dertaken. Many terms will be poorly populated, with only a handful of observations, 
inflating the associated errors and reducing the associated reliability of prediction. 
Moreover, it is always possible to over-emphasize the usefulness of cross-validation 
and q^ as measures of performance [Golbraikh & Tropsha 2002]: high values of Leave-
One-Out q^ are a necessary, but not a sufficient, condition for a model to possess 
high predictivity. Likewise, high values of sensitivity or specificity or area-under-
the-curve from ROC analysis are useful but flawed measurements of performance. 
External test sets and randomization of training data are also important criteria for 
assessing model quality. There is no single value or criteria that can give an ade
quate appraisal of methodological perfection. Combinations of all these criteria are 
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required. However, most groups are certainly aware of most, if not all, the inherent 
dangers within immunoinformatics, and most actively seek to minimize them. 

Ultimately, however, the greatest limiting factor is imposed by the data itself. This 
is, as we have said time and again before, undoubtedly the overriding issue. With a 
properly designed training set most issues would be resolved, but such sets are not 
subsets of available data. Rather they require new data to be produced and that 
necessitates close, if often elusive, synergistic interactions between theoreticians and 
experimentalists. No data-driven method can go beyond the training data: all meth
ods are better at interpolating than extrapolating. It is only by having excellent 
quality data in abundance that we can hope for general and excellent models. Even
tually, as more sophisticated methods, such as molecular dynamics (MD), become 
habitually used tools, we will, in concert with measured data, develop considerably 
more accurate and predictive models. MD escapes from the innate limitations im
posed by data through its ability to offering us the chance of true de novo prediction 
of binding affinities and many other thermodynamic properties. 

More sophisticated approaches will allow us to not only predict affinity but, through 
simulation, to drive forward experimental studies in a similar fashion to the way 
theoretical physics drives forward experimental physics. There are many aspects of 
the biophysics of peptide binding to MHCs which is only poorly understood. For 
example, as affinity rises, the phenomenon of enthalpy-entropy compensation be
comes important. Where multiple weak non-covalent interactions hold a molecular 
complex together, the enthalpy of all of the individual intermolecular bonding inter
actions is reduced by extensive intermolecular motion. Additional interaction sites 
will generate a complex which is more strongly bound. This results in part from the 
dampening of intermolecular motion, with all individual interactions becoming more 
favourable. This was observed in the case of our A2 superbinders, where our additive 
models greatly under-predicted the actual affinity values we subsequently measured. 
To analyse such phenomena requires more subtle and sensitive techniques than are 
provided by radioligand competition assays. Currently, the best single methodology 
for obtaining relevant thermodynamic properties of binding reactions is undoubt
edly ITC, which is rapidly becoming the method of choice for such studies. No 
method however readily addresses the joint goals of effectively mimicking the in 
vivo membrane-bound nature of the interaction and the need for accuracy. In an 
ideal world we would look at a variety of "internally rich" data from ITC, volumet
ric analysis, and fluorescence spectroscopy. To do this on an appropriate scale would 
however be prohibitively time consuming and expensive. Where one might conceive 
of doing this for one allele, there are dozens of frequent alleles within the human pop
ulation. To pursue internally-rich assays for all interesting alleles is clearly beyond 
the scope of existing methodology. 

Thus, many problems remain in attempting to predict peptide-MHC binding. This 
at least is clear. Some theoretical, some experimental. However, extant techniques do 
work. We have recently compared the performance of web-server implementations 
of various published methods and find the best of these to perform well as epitope 
identification engines (Guan et al., unpublished), at least for those alleles where 
binding data is reasonably plentiful. Thus the future for such approaches seems 
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bright, assuming that reasonable quantities of data are available. Where data is 
scant we are less sanguine in our outlook. Thus, finally, two needs are clear. Firstly, 
for vaccinologists to use methods for those alleles where methods are seen to work 
well, and secondly for experimentalists to undertake the necessary assays for alleles 
where methods require improvement. 
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0.000 

-0.003 

0.000 

-0.351 

0.000 

-0.003 

0.017 

0.064 

0.080 

0.000 

0.213 

-0.125 

-0.079 

0.000 

0.000 

0.000 

P 8 

0.447 

0.079 

-0.041 

-0.048 

0.000 

0.000 

0.213 

0.000 

0.000 

-0.242 

-0.027 

-0.097 

0.000 

-0.067 

-0.229 

0.000 

0.012 

0.000 

0.000 

0.000 

P 9 

-0.034 

-0.139 

-0.203 

0.000 

0.000 

-0.067 

0.000 

-0.069 

0.000 

0.066 

0.082 

-0.455 

0.280 

-0.051 

0.216 

0.213 

0.161 

0.000 

0.000 

o.oooj 
Table 8.2. Additive model for the binding affinity prediction to the I-A^ allele. * 
constant = 6.044 and ** 0.000 represents position where amino acids are absent 
within matrix 
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Human 

Mouse 

Epitope 

A*0101 

A*0201 

A*0202 

A*0203 

A*0206 

A*0301 

A*1101 

A*3101 

A*6801 

A*6802 

B*0702 

B*2705 

B*3501 

B*5301 

B*5401 

Cw*0102 

H2-K^ 

H2-K^ 

H2-D^ 

n " 

95 

335 

69 

62 

57 

72 

62 

30 

38 

46 

78 

89 

52 

63 

74 

57 

154 

62 

65 

LOO-CV 
SEP ^ 

0.907 

0.694 

0.606 

0.841 

0.576 

0.680 

0.572 

0.710 

0.594 

0.647 

0.707 

0.522 

0.710 

0.868 

1.005 

0.722 

0.565 

0.894 

0.837 

q^^ 
0.420 

0.377 

0.317 

0.327 

0.475 

0.436 

0.458 

0.482 

0.531 

0.500 

0.488 

0.434 

0.435 

0.508 

0.458 

0.652 

0.456 

0.454 

0.493 

Non-Cross Validation 
N C ^ 

4 

6 

9 

6 

6 

6 

2 

3 

4 

7 

6 

6 

6 

6 

6 

5 

6 

6 

5 

SEE ^ 

0.146 

0.456 

0.193 

0.197 

0.085 

0.181 

0.321 

0.325 

0.175 

0.119 

0.150 

0.089 

0.118 

0.154 

0.288 

0.180 

0.198 

0.128 

0.268 

r^ 

0.997 

0.731 

0.943 

0.963 

0.989 

0.959 

0.829 

0.892 

0.959 

0.983 

0.977 

0.984 

0.984 

0.985 

0.956 

0.978 

0.933 

0.989 

0.948 

Table 8.3. Class I Additive-PLS Method results. "* Number of epitopes. ^ Standard 
Error of Prediction. ^ Obtained after Leave-One-Out Cross-Validation. ^ Number of 
components.^ Standard Error of Estimate 
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Position 

P I Side chain 
falls into 
pocket A 

P 2 Side chain 
falls into 
pocket B 

P 3 Side chain 
falls into 
pocket D 

P 4 Side chain 
is solvent ex
posed &: can 
contact T cell 

P 5 

P 6 Side chain 
falls into 
pocket C 
P 7 Side chain 
falls into 
pocket E 

P 8 Side chain 
is solvent ex
posed &: can 
contact T cell 

P 9 Side chain 
falls into 
pocket F 

A2 Supermotif (Class 
I HLA-A*0201, 
A*0202, A*0203, 
A*0206 and A*6802) 

+ 

+ 

+ 

+ 
Aromatic 
amino acids 
preferred. 

Aliphatic 
amino acids 
preferred. 

Aliphatic 
amino acids 
preferred. 

Aliphatic 
amino acids 
preferred. 

Aliphatic 
amino acids 
preferred. 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

Class I Mouse (H2 -
D^H2-K\H2-K^) 

+ 

+ 

+ 

+ + 

+ 

+ 

+ 

4-

+ 

+ 

4-

+ 

+ 

+ 

+ 

+ 

Table 8.9. Summary 
(Class I HLA-A*0201, 
H2-K^ H2-K^ H2-D^ 
D H bond donor, A H 

of CoMSIA position specificities for the A2 supermotif ^̂  
A*0202, A*0203, A*0206 and A*6802) and Class I Mouse 
Key: S - Steric Bulk, E Eletron Density, H hydrophobicity, 
bond acceptor. + favoured, - disfavoured 
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Summary . The genes encoding the major histocompatibility (MHC) molecules are 
among the most polymorphic genes known in vertebrates. Since MHC molecules 
play an important role in the induction of immune responses, this polymorphism 
is probably due to selection for increased protection of hosts against pathogens. 
In contrast to the large population diversity of MHC molecules, each individual 
expresses only a limited number of different MHC molecules. This is widely believed 
to represent a trade-off between maximizing the detection of foreign antigens, and 
minimizing the loss of T cell clones during self tolerance induction in the thymus. 

Here we review theoretical models and bioinformatic analyse that we have developed 
to study the diversity of MHC molecules, both at the individual and at the popula
tion level. We have found that thymic selection does not limit the individual MHC 
diversity. Expression of extra MHC types decreases the number of clones surviving 
negative selection, but increases the number of positively selected clones. The net 
effect is that the number of clones in the functional T cell repertoire would increase 
if the MHC diversity within an individual were to exceed its normal value. 

It has been proposed that the large population diversity of the MHC is due to 
selection favoring MHC heterozygosity. Since MHC heterozygous individuals can 
present more peptides to the immune system, they are better protected against 
infections than MHC homozygous individuals. Using a population genetics model, 
we found however that this heterozygote advantage is insufficient to explain the 
large degree of MHC polymorphism found in nature. Only if all MHC alleles in 
the population were to confer unrealistically similar fitness contributions to their 
hosts, could heterozygote advantage account for an MHC polymorphism of more 
than ten alleles. By predicting the immunodominant peptides from various common 
viruses we found that different MHC alleles are expected to provide quite different 
levels of protection. Thus, additional selection pressures seem to be involved. Using 
a computer simulation model we found that frequency-dependent selection by host-
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pathogen coevolution provides such an additional selection pressure that can account 
for realistic degrees of polymorphism of the MHC. The polymorphism of the MHC 
thus seems a result of host-pathogen coevolution, giving rise to a large population 
diversity despite the limited degree of MHC diversity within individuals. 

9.1 Introduction 

MHC molecules play a central role in the induction of cellular immune responses. 
The proteins of infected cells are degraded intracellularly and presented by MHC 
molecules on the surface of the cell. When T lymphocytes recognize the resulting 
MHC-peptide complexes, they can mount an immune response against the infected 
cells, see Chapter 1 and Chapter 8. The MHC is the textbook example of genetic 
polymorphism: for some MHC loci, more than a hundred different alleles have been 
identified [Parham Sz Ohta 1996, Vogel et al. 1999]. This polymorphism is most 
likely due to Darwinian selection for diversity in MHC-peptide binding. Indeed, 
the ratio of non-synonymous versus synonymous substitutions within MHC-peptide 
binding regions is much higher than in other genes or other regions of the MHC 
[Hughes & Nei 1988, Hughes & Nei 1989, Parham et al 1989a, Parham et al 1989b]. 
MHC polymorphism creates individual differences in immunity against pathogens 
[Barouch et al 1995]. Thanks to this variation, a pathogen that manages to evade 
presentation in one particular host, may not be able to evade presentation in another 
host with different MHC molecules. 

The diversity of MHC molecules within an individual is only a tiny fraction of the 
MHC population diversity. Each human being, for example, expresses only three 
classical MHC class I genes (HLA A, B, and C), and three classical MHC class 
II gene pairs (coding for the a and p chains of HLA DP, DQ, and DR). A fully 
heterozygous individual therefore expresses maximally six different class I MHC 
molecules and twelve different class II MHC molecules (due to trans-association of 
the a and (3 chains within HLA DP, DQ, and DR) [Paul 1999]. Since MHC genes are 
codominantly expressed, MHC heterozygous individuals can present a larger variety 
of peptides to the immune system than homozygous individuals, and are thereby 
better protected against infections [Penn et al 2002]. Evidence for this MHC het-
erozygote advantage has been found in HIV [Carrington et al 1999], HTLV-1 [Jeffery 
et al 2000], and LCMV infection [Weidt et al 1995]. Mate choice experiments also 
suggest that females tend to increase the degree of MHC heterozygosity of their off
spring by choosing mates with MHC alleles that differ from their own MHC alleles 
[Potts et al 1991, Wedekind et al 1995, Ober et al 1997, Reusch et al 2001]. 

Prompted by the insight that expression of different MHC molecules provides a 
selective advantage, we used theoretical models and bioinformatic analyse to study 
the following three questions: 

1. Why does each individual express only a limited number of MHC genes? 
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2. Can selection for MHC heterozygosity readily explain the extreme population 
diversity of the MHC? 

3. Could the large degree of MHC polymorphism be due to host-pathogen coevo-
lution? 

The mathematical modeling of the immune system in this Chapter differs from the 
ordinary differential equation (ODE) models presented in Chapter 4 and Chapter 
13 because both Chapters describe the kinetics of immune responses within one 
individual host. The models presented here have a dynamics on an evolutionary 
time scale. The first model considers one host, and provides a simple probabilistic 
expression for the likelihood that a T cell survives selection in the thymus. The other 
models consider evolution in a population of hosts by either a population genetics 
model, or by a computer simulation model in which the fitness of individual hosts 
and pathogens is computed. 

9.2 MHC diversity within the individual 

Since individual MHC diversity increases the presentation of pathogens to the im
mune system, one may wonder why the number of MHC genes is not much higher 
than it is. The argument that is mostly invoked is that more MHC diversity within 
the individual would lead to T cell repertoire depletion during self tolerance induc
tion [Matzinger et al. 1984, Vidovic &: Matzinger 1988, Parham et al. 1989a, Nowak 
et al. 1992, De Boer & Perelson 1993, Takahata 1995, Janeway & Travers 1997, Cohn 
1985, Celada &: Seiden 1992, Lawlor et al. 1990]. Since all T lymphocytes recogniz
ing self peptide-MHC complexes with too high avidity have to be tolerated to avoid 
autoimmune reactions [Nossal 1994], excessive MHC diversity within an individual 
would hamper the immune system [Matzinger et al. 1984, Vidovic & Matzinger 
1988, Parham et al. 1989a, Nowak et al. 1992, De Boer & Perelson 1993, Takahata 
1995, Janeway & Travers 1997, Cohn 1985, Celada & Seiden 1992, Lawlor et al 
1990]. This argument is incomplete, however, because more MHC diversity could 
also increase the number of clones in the T cell repertoire through positive selection. 
In order to be rescued in the thymus, lymphocytes need to recognize MHC-self pep
tide complexes with sufficient avidity [Von Boehmer 1994, Fink & Bevan 1995]. A 
high MHC diversity thus increases both the number of lymphocyte clones that are 
positively selected and the number of clones that are negatively selected. We have 
calculated the net effect of these two opposing processes using a simple mathematical 
model [Borghans et al. 2003]. 

Consider an individual with M different MHC molecules and an initial T lymphocyte 
repertoire consisting of Ro different clones. Let p and n denote the (unconditional) 
chances that a clone is positively selected by a single MHC type, because its avidity 
is higher than a threshold Ti, or negatively selected because its avidity exceeds a 
higher threshold T2, respectively (see Figure 9.1). By this definition, thymocytes 
can only be negatively selected by MHC molecules by which they are also positively 
selected [Meerwijk et al. 1997], i.e. n < p. Since T cell clones need to be positively 
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positive selection: p 

T1 T2 
avidity for self peptide-MHC 

Fig. 9 .1 . Positive and negative selection according to the avidity model [Janeway 
& Katz 1984]. The curve depicts the distribution of thymocyte avidities for self 
peptide-MHC complexes. In our model, the chance p to be positively selected by a 
single MHC type is the chance that the avidity between the thymocyte T cell recep
tor and any of the self peptide-MHC complexes exceeds threshold T\. Thymocytes 
with avidities for self peptide-MHC complexes exceeding the upper threshold T2 are 
negatively selected (with chance n per MHC type). 

selected by at least one of the MHC molecules, and to avoid negative selection by 
all of the MHC molecules, the number of clones in the functional repertoire R can 
be expressed as 

i ^ - i ^ o ( ( l - n ) ^ - ( l - p ) ^ ) . (9.1) 

The functional repertoire R thus contains all T cell clones that fail to be negatively 
selected, minus the ones that also fail to be positively selected by any of the M 
different MHC molecules of the host [Borghans et al. 2003]. 

Experimental estimates for the parameters of this model have recently become avail
able. In mice, around 3% of the T cells produced in the thymus end up in the 
mature T cell repertoire [Scollay et al. 1980, Egerton et al. 1990, Shortman et al. 
1991, Merkenschlager et al. 1997], and at least 50% of all positively selected T cells 
have been shown to undergo negative selection in the thymus [Meerwijk et al. 1997]. 
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Thus, 94% of all thymic T cells fail to be positively selected by any of the MHC 
molecules in the host [Meerwijk et al. 1997]. We have used these estimates to calcu
late the chances p and n of a T cell clone to be positively or negatively selected by a 
single type of MHC molecule. Taking into account that inbred mice are homozygous 
and therefore express 3 types of class I and 3 types of class H MHC molecules, p and 
n follow from: {l-pf = 0.94 and ( 1 - n ) ^ = 0.97. This yieldsp = 0.01 and n = 0.005 
[Borghans et al. 2003]. Both class I and class II MHC molecules are incorporated in 
these calculations, because positive selection and at least part of negative selection 
take place at the double positive (DP) stage [Kisielow et al. 1988, Baldwin et al. 
1999], when thymocytes express both CD4 and CD8 coreceptors. 

Using these experimental estimates, we found that the number of clones in the 
functional T cell repertoire R increases with the number of different MHC molecules 
M in an individual until M = 140 (see Figure 9.2). In other words, the size of the 
functional T cell repertoire would increase if the MHC diversity M were to exceed 
its normal value of ten to twenty in heterozygous individuals. The intuitive reason 
is that only a very small part of the T cell repertoire has sufficient avidity for any 
of the self peptides presented by a single MHC type to be positively selected by 
that MHC. As long as additional MHC types positively select parts of the T cell 
repertoire that hardly overlap, negative selection only eliminates T cells that were 
not expected to be positively selected in the absence of those MHC molecules. A 
net negative effect of MHC diversity on the size of the functional T cell repertoire 
is only attained once the individual MHC diversity is so large that thymocytes are 
selected by multiple MHC types, i.e. when M > 140. 

The finding that the expression of extra MHC molecules would increase the diversity 
of the T cell repertoire is a consequence of the current consensus that positive 
selection is a strong bottleneck [Von Boehmer 1994, Fink 8z Bevan 1995, Meerwijk 
et al. 1997, Surh & Sprent 1994]. This explains why previous studies claimed a low 
optimal number of MHC types due to negative selection in the thymus [Takahata 
1995, Celada & Seiden 1992, De Boer & Perelson 1993, Nowak et al. 1992]. These 
models either did not at all account for positive selection [De Boer & Perelson 1993], 
or involved too stringent negative selection [Takahata 1995, Nowak et al. 1992], 
because T cells with avidities too low to be positively selected by a particular MHC 
molecule could nevertheless be negatively selected by that same MHC molecule. The 
latter is in disagreement with the avidity model depicted in Figure 9.1, and would 
lead to a net decrease of the functional T cell repertoire at MHC diversities as low 
as one to two MHC types per individual [Borghans et al. 2003]. 

Summarizing, if current estimates of positive and negative selection are correct, the 
consensus explanation that the MHC diversity per individual is limited to avoid 
repertoire depletion [Matzinger et al. 1984, Vidovic &: Matzinger 1988, Parham et 
al. 1989a, Nowak et al. 1992, De Boer & Perelson 1993, Takahata 1995, Janeway & 
Travers 1997, Cohn 1985, Celada & Seiden 1992, Lawlor et al. 1990] is untenable. 
What remains is the question what can explain the limited number of different MHC 
molecules per individual. First of all, it may simply be sufficient to have a few MHC 
types per individual. Since many peptides can be generated from a single pathogen, 
even a low individual MHC diversity gives a good chance to present and respond to 
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MHC diversity (log M) 

Fig. 9.2. The size of the T cell repertoire as a function of MHC diversity. The 
number of clones in the functional repertoire R is plotted as a fraction of the total 
initial lymphocyte repertoire RQ. Parameters are: p — 0.01, and n == 0.005. Note 
that at M = 6 indeed 3% of the initial T cell repertoire ends up in the functional 
lymphocyte repertoire [Egerton et al. 1990]. From: [Borghans et al. 2003]. 

pathogens [Borghans et al. 2003]. There could thus be no selection for more MHC 
diversity per individual. Another possibility is that the number of different MHC 
molecules per individual is limited to avoid the induction of inappropriate, cross-
reactive immune responses (see also [Borghans et al. 1999, Borghans & De Boer 
2001, Borghans & De Boer 2002]), such as anti-viral responses that cause autoim
munity as a side effect [Zhao et al. 1998, Bachmaier et al. 1999]. More MHC diver
sity than strictly required to ensure the presentation and recognition of pathogens, 
would increase the risk to induce such undesirable responses (see also [Apanius et 
al. 1997, Borghans & De Boer 2001]). Alternatively, it has been proposed that the 
limited MHC diversity per individual helps to induce effective immune responses by 
focusing the T cell repertoire at a few epitopes only [van den Berg k. Rand 2003]. 
Indeed, if all cells were to express a great variety of MHC molecules at the cell 
surface, the concentration of any MHC-peptide ligand might be too low to induce 
an effective immune response. Finally, we emphasize again that the high optimum 
that we find (Figure 9.2) is due to fact that positive selection is the major bottle
neck for lymphocyte selection according to the parameters that we have taken from 
the literature. [Huseby et al. 2005] recently suggested that positive selection in the 
thymus is much less restrictive, and that negative selection is the major bottle-neck. 
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If this turns out to be true the optimum number of MHC molecules could be much 
lower [De Boer & Perelson 1993]. 

9.3 Heterozygote advantage 

Even though the MHC diversity within individuals is quite limited, the chance that 
two individuals are MHC identical is extremely small. The mechanisms underlying 
the high population diversity of MHC molecules have been debated for decades. 
The discussion basically centres around two opposing views. According to one, the 
large degree of MHC polymorphism is due to selection favoring MHC heterozygous 
hosts [Doherty k, Zinkernagel 1975, Hughes & Nei 1988, Hughes k, Nei 1989, Taka-
hata & Nei 1990, Hughes & Nei 1992, Jeffery & Bangham 2000, Maruyama & Nei 
1981, Hughes & Yeager 1998]. Although there is general agreement upon the signif
icance of heterozygote advantage, others have argued that the impact of heterozy
gote advantage is insufficient to explain the large MHC diversity observed in nature 
[Lewontin et al. 1978, Aoki 1980, Parham et al 1989b, Lawlor et al. 1990, Wills 
1991]. We have developed a population genetics model to study the degree of poly
morphism heterozygote advantage can lead to [De Boer et al. 2004]. In contrast to 
previous theoretical models for heterozygote advantage, the model is allele-based 
in the sense that the fitness of a host is determined by the fitness contributions 
of individual MHC alleles. This change of approach appeared to be an important 
improvement over previous models, leading to a complete revision of previous con
clusions. 

Consider a population of n different MHC alleles at a single locus, each characterized 
by a parameter /«, representing the fitness contribution of the allele to its host. One 
can think of this fitness parameter as the fraction of pathogens the MHC allele 
can provide protection to. The frequency of the MHC alleles in the population is 
denoted by pi. For simplicity, we define the fitness of a homozygote as fa = P + fi, 
and the fitness of a heterozygote as fij = l3 + fi-\- fj, where f3 denotes a basis fitness 
parameter independent of the MHC. In fact, this additive fitness definition only 
holds if there is no overlap between the pathogens alleles i and j provide protection 
to. Refinement of this fitness definition accounting for such overlaps complicates the 
mathematical analysis but does not lead to qualitatively different results [De Boer 
et al 2004]. 

In a population with n different MHC alleles present at random frequencies, the 
allele frequencies change according to the fitness contributions fi of the different 
alleles. Alleles contributing little to the hosts' fitness attain low frequencies, while 
useful MHC alleles increase in frequency. At steady state, the marginal fitnesses 
Wi — Y^'^=iP3fij should be identical for all alleles i. MHC alleles with high fitness 
contributions, present at high frequencies, attain the same marginal fitness as rare 
MHC alleles, because they occur more often in MHC homozygous hosts [Apanius 
et al 1997]. Thanks to the heterozygote advantage, MHC alleles with relatively low 
fitness contributions fi can remain in the population by "hitch-hiking" with better 
alleles in heterozygous hosts. 
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A certain minimal fitness contribution is required, however, for an MHC allele to 
be maintained in the population. Let all n MHC alleles be ranked such that / i > 
••• > /n- In the Appendix we show that a novel allele with fitness value /n+i < fn 
can only successfully invade into a settled steady state population of n alleles if [van 
Boven Sz Weissing 2001, Weissing & van Boven 2001]: 

/ „ + i > ^ ^ ^ / , (9.2) 
n 

where / = ^ / lC?=i ff^ is the harmonic mean of the fitness contributions of the 
n established alleles. Thus, novel alleles will only be able to invade if their^fitness 
contribution is sufficiently close to the harmonic mean fitness contribution / of the 
n established alleles. For example, in a population of 19 alleles, a 20*^ allele can 
invade only if its fitness contribution exceeds 19/20 of the harmonic mean of the 
fitness contributions of the 19 resident alleles. According to Eq. (9.2), the critical 
fitness contribution of a novel allele increases with the degree of polymorphism n. 
Thus, the larger the MHC polymorphism is, the harder it becomes to attain an even 
higher degree of polymorphism. 

The above findings are illustrated in Figure 9.3, where an example is shown in which 
the fitness contributions of the diff'erent alleles are given by /i = (1 — s)*~^. The 
parameter s defines the steepness with which the fitness contribution decreases with 
the allele number. Solving s from Eq. (9.2) gives the maximum 5 value compatible 
with a polymorphism of n + 1 alleles (see Appendix). Figure 9.3 confirms that large 
degrees of polymorphism require a high fitness contribution of invading alleles, and 
a small variation in allele fitness contributions s. Heterozygote advantage can thus 
only account for a very high degree of MHC polymorphism if the variation in fitness 
contributions amongst the MHC alleles is vanishingly small [De Boer et al. 2004]. 

One could argue that evolution leads to a slow accumulation of novel MHC alle
les with very similar fitness contributions [Lewontin et al. 1978]. We think this is 
not the case, however, because MHC alleles differ greatly in their binding motifs 
[Barouch et al. 1995, Rammensee et al. 1999], and even small binding motif dif
ferences can lead to large differences in protection. For instance, one amino acid 
difference in the peptide-binding region of the DRB 1*1302 allele abrogates its pro
tection to malaria [Davenport et al. 1995]. The fact that the HLA alleles expressed 
in the South Amerindian population are different from those in the founder popu
lation, while North Amerindians still express the founder alleles [Parham & Ohta 
1996], also suggests that different MHC alleles provide different degrees of protection 
against different pathogens. Similarly, [Gao et al. 2001] found that despite the small 
differences in binding motifs, the B*3503 allele is associated with fast progression 
to AIDS, while B*3501 is not. To get an idea on the extent to which MHC allele 
fitness contributions differ, we predicted the best binding peptide of 17 different 
viral proteomes for three human class I MHC alleles (Figure 9.4), using an estab
lished MHC-peptide binding prediction method [Parker et al. 1994]. The amino 
acid weight matrices of HLA-A*0201, HLA-A*0205, and HLA-A*3101 were down
loaded from b imas .dc r t . n ih .gov /molb io /h l a3 ind / (April, 2002). These three al
leles were chosen because their weight matrices were sufficiently detailed to allow 
for an almost continuous ranking of the peptides. In the weight matrices, dominant 
anchor residues have the highest weights, followed by auxiliary anchor residues, and 
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Fig. 9.3. The MHC polymorphism obtained with allele fitness contributions fi — 
(1 - sy-\ Panel (a) gives the invasion of the n + 1*̂  allele into an established 
polymorphism of n alleles (see Appendix). The line marked by circles depicts the 
maximal value of the steepness parameter s for a novel allele to invade and establish 
the polymorphism plotted on the horizontal axis. The line marked by squares is the 
critical fitness^contribution of the invading allele, which approaches the harmonic 
mean fitness / when n —» oo. Panel (b) depicts the corresponding distributions of 
allele frequencies for n + 1 == 3,4,5,10 and 20 alleles, i.e. for s = 0.38,0.19,0.11,0.02 
and 0.005, respectively. From: [De Boer et al. 2004]. 

favorable amino acids. Unfavorable amino acids have a weight less than one. The 
binding score of each MHC-peptide combination is defined as n?=i '^i^ where Wi is 
the weight index of the amino acid at position i in the peptide. This definition is 
based on the assumption that each amino acid in the peptide contributes indepen
dently to the binding score. Since this method yields a binding score rather than an 
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affinity, we performed a non-parametric normalization by ranking the binding score 
of the best binding foreign peptide among the binding scores of all 8.5 x 10^ unique 
9-mer peptides from the human proteome. This ranking provides an indication for 
the fitness contribution of an MHC allele. If many self-peptides bind better than the 
best-binding foreign peptide, its binding affinity to the MHC is relatively low, and 
the foreign peptide is likely to be out competed by self-peptides on the surface of 
antigen-presenting cells. The human proteome and 17 virus proteomes were down
loaded from the http://www.ebi.ac.uk/genomes data base (March 2, 2002). All 
9-mer peptides containing the non-standard amino acids B, X, and Z were ignored. 

Our bioinformatic analysis suggests that viruses are presented very differently by 
different MHC alleles (Figure 9.4). Since immunity against dangerous viruses can 
be a matter of life and death, the differences in antigen presentation between MHC 
alleles can lead to large host fitness differences. Remember that even a low polymor
phism of 20 MHC alleles requires that the fitness contribution of the worst allele is 
at least 95% of the harmonic mean of the fitness contributions of the other 19 alleles 
(see above). The fact that we found such large presentation differences between the 
three human MHC alleles in our analysis therefore makes it extremely unlikely that 
the fitness contributions of all MHC alleles in the human population are sufficiently 
similar to explain the large degree of MHC polymorphism by heterozygote selection 
only. 

Remarkably, previous claims that heterozygote advantage suffices to explain high 
degrees of MHC polymorphism where also based on theoretical models [Takahata 
Sz Nei 1990, Hughes & Yeager 1998, Hughes & Nei 1992, Maruyama & Nei 1981]. 
These models where, however, based on random genotype fitness matrices [Lewontin 
et al. 1978, Maruyama & Nei 1981, Takahata & Nei 1990]. The main problem when 
using random fitness matrices is that the fitness of genotypes in the model becomes 
unrelated to the fitness contributions of the individual MHC alleles. In the model of 
Takahata & Nei [Takahata & Nei 1990], for example, all heterozygote fitnesses were 
set to one, which allows any novel allele to invade into any established polymorphism 
[De Boer et al. 2004]. Instead, in our model host genotype fitnesses were determined 
by the fitness contributions of individual MHC alleles. Since heterozygous hosts 
with poor alleles thus had a smaller fitness than heterozygotes with useful alleles, 
this gave rise to much lower degrees of polymorphism. Unless all MHC alleles in a 
population confer almost identical levels of protection to their hosts (which we claim 
not to be the case, see Figure 9.4), heterozygote advantage thus fails to explain the 
large degree of polymorphism of the MHC [De Boer et al. 2004]. 

9.4 M H C polymorphism by hos t -pa thogen coevolution 

Since heterozygote advantage is insufficient to explain the large degree of polymor
phism of the MHC, additional mechanisms should be involved. Alternative mech
anisms that have been proposed vary from MHC-dependent mate selection, and 
preferential abortion, to various pathogen-driven selection pressures (see [Apanius 
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Fig. 9.4. Different HLA-A alleles provide a different level of protection to various 
viruses. Weight matrices of the binding motifs of the HLA-A*0201, HLA-A*0205, 
and HLA-A*3101 alleles were used to score the ranking of all unique 9-mers from 
the proteomes of various common viruses. The scores were normalized by compar
ing them to the predictions of all unique 9-mers from the human proteome. For 
each virus, the ranking of the binding score of the best-binding viral peptide in the 
sorted list of binding scores of all self peptides is given. For instance, the best binding 
peptide from the Parvovirus proteome for the HLA-A*3101 allele binds worse than 
340 self peptides from the human proteome, while the best binding peptide for the 
HLA-A*0205 allele binds worse than more than 60,000 self peptides. This ranking 
provides an indication of the levels of protection provided by the MHC alleles. Since 
the expected ranking (denoted by stars) increases with the number of unique 9-mers 
in the virus proteomes, the viruses on the horizontal axis were ordered by their size 
as measured by the total number of unique 9-mers: Pa: Parvovirus HI (X01457), 
HB: Hepatitis B virus (X51970), HI: Human T-cell leukaemia virus type I (D13784), 
Po: Human poliovirus 1 (AJ132961), HA: Hepatitis A virus (M14707), HC: Hep
atitis C virus (AJ132997), HIV: Human immunodeficiency virus 1 (AJ006287), Ru: 
Rubella virus (AF188704), De: Dengue virus type 1 (U88536), Yf: Yellow fever 
virus (X03700), Ra: Rabies virus (M31046), lA: Influenza A virus segments 1-8 
(V00603, J02151, V01106, V01088, J02147, J02146, V01099, J02150), Rs: Human 
respiratory syncytial virus (AF013254), Se: Sendai virus (M69046), Mu: Mumps 
virus (AB04087), Eb: Ebola virus (AF086833), and Me: Measles virus (K01711), 
where GenBank accession numbers are given in brackets. 
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et al. 1997] and [Penn 2002] for extensive reviews). We have developed a computer 
simulation model to analyse the impact of frequency-dependent selection by host-
pathogen coevolution [Borghans &: De Boer 2001, Beltman et al. 2002, Borghans 
et al 2004]. Since evolution favors pathogens that avoid presentation by the most 
common MHC molecules in the host population, hosts with rare MHC alleles have 
a higher fitness than hosts with common MHC alleles. The frequency of rare MHC 
alleles will therefore increase, and common MHC alleles will become less frequent, 
resulting in a dynamic polymorphism [Snell 1968, Bodmer 1972, Slade Sz McCallum 
1992, Beck 1984]. Recent studies of a snail infected by a trematode parasite provide 
support for host-pathogen coevolution, by demonstrating that the parasite adapts 
to be most virulent in the dominant host genotype [Dybdahl &; Lively 1998, Lively 
Sz Dybdahl 2000]. Another example is HIV-1, which has evolved protein regions 
that are devoid of epitopes because they lack immuno-proteasome cleavage sites 
or generate peptides that are poorly presented by MHC molecules [Korber et al. 
2001a, Moore et al. 2002, Leslie et al. 2005]. 

Consider a population of A ĥost diploid hosts, each represented by two bit strings 
coding for the MHC alleles at a single locus. Pathogens are haploid and occur in 
50 independent species of maximally 10 different genotypes. Each pathogen is mod
elled by 20 bit strings representing its dominant peptides. Both peptides and MHC 
molecules are 16 bits long. Peptide presentation by an MHC molecule is modelled by 
complementary matching. If the longest stretch of adjacent complementary bits is 
at least 7 bits long, the peptide is considered to be presented by the MHC molecule. 
With these parameters the chance that a random MHC molecule presents a randomly 
chosen peptide is about 5%, which is close to the experimental estimate [Kast et 
al. 1994]. Thus, hosts carrying different MHC molecules typically present different 
peptides of the same pathogen. Since pathogens typically have shorter generation 
times than their hosts, 10 pathogen generations occur per host generation. At each 
pathogen generation, every host interacts with one randomly chosen member of each 
pathogen species. The fitness of a host is defined as the fraction of pathogens it has 
presented during one host generation. The fitness of a pathogen is the fraction of 
hosts that the pathogen can infect during one pathogen generation without being 
presented by the host's MHC molecules. At the end of each generation, all individu
als are replaced by fitness-proportional reproduction. The chance that an individual 
reproduces is proportional to its squared fitness divided by the sum of the squared 
fitnesses in the pathogen species or host population. Pathogen genotypes reproduce 
asexually; newborn pathogens come from parents of the same pathogen species. 
Newborn hosts have two parents, each of which donates a randomly selected MHC 
allele. The size of the host population and the number of pathogens remain constant. 
Mutations are modelled by generating new random bit strings. MHC molecules mu
tate at a frequency yuhost — 10~^ per allele per host generation. The mutation rates 
of the pathogen species vary between //path = 10"^ per peptide per pathogen gener
ation and //path = Mhost- Thus, most pathogen species mutate much faster than the 
hosts. 

To study the evolution of MHC polymorphism, all hosts were initialized with the 
same randomly chosen MHC allele. Pathogens were initialized fully randomly, i.e. 
each pathogen species started with 10 genotypes each consisting of 20 randomly 
generated peptides. A population of 1000 diploid hosts coevolving with 50 pathogen 
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Fig. 9.5. The evolution of MHC polymorphism in host populations starting with a 
single MHC allele at one locus. The solid curve depicts a simulation with coevolv-
ing hosts and pathogens, the dashed curve represents a simulation of heterozygote 
advantage (in which the pathogens did not evolve), and the dotted curve represents 
purely neutral selection. From: [Borghans et al. 2004]. 

species developed a stable MHC polymorphism of approximately 27 alleles (see the 
solid curve in Figure 9.5). At the end of the simulation, the pathogens escaped 
from presentation by the MHC molecules of 45% of the heterozygous hosts, which 
is much more than the 16% expected for a random pathogen [Borghans et al. 2004]. 
Apparently, most of the pathogens were well adapted by being poorly presented by 
the 27 different MHC molecules present in the host population. 

The parameter regime strongly favored MHC heterozygous hosts: a pathogen with 
20 peptides had 84% chance of being presented by a host with two different MHC 
molecules, and only 59% in a host with a single MHC molecule [Borghans et al. 2004]. 
Nevertheless, the impact of heterozygote advantage on the MHC polymorphism was 
small. When pathogen selection was prevented by imposing one and the same fitness 
value on all pathogens, a polymorphism of only about 7 MHC alleles was attained 
(see the dashed curve in Figure 9.5). As the pathogens no longer adapted to the 
host population, this polymorphism must have been purely due to heterozygote 
advantage. In the absence of host and pathogen selection an even lower degree of 
polymorphism was attained (see the bottom Hne in Figure 9.5). Summarizing, host-
pathogen coevolution leads to a significantly higher degree of MHC polymorphism 
than heterozygote advantage. 

The degree of MHC polymorphism developing under host-pathogen coevolution was 
highly dependent on two parameters of the model. The first one is the host popu
lation size, affecting the chance that rare alleles are driven to extinction. Increasing 
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the host population size from 1000 to 5000, almost linearly increased the degree of 
MHC polymorphism (see Figure 9.6a). Since a host population of 5000 individuals 
coevolving with pathogens developed a polymorphism of more than 50 alleles, we 
expect coevolution to be able to account for the naturally observed polymorphism of 
more than 100 alleles per locus in large natural populations [Parham & Ohta 1996]. 
Conversely, when there was only heterozygote advantage, the degree of polymor
phism remained small when the population size was increased (see Figure 9.6a), and 
was mainly determined by the fitness distribution of the alleles (see Section 9.3). 

Surprisingly, the second parameter affecting the degree of MHC polymorphism is 
the mutation rate of the pathogens. When each pathogen species had the same low 
mutation rate, e.g. /Xpath = 10~^ for all pathogen species, the pathogens changed so 
slowly that the difference between coevolution and heterozygote advantage vanished 
(see Figure 9.6b). The hosts evolved a few MHC molecules specialized at presenting 
the peptides present in the pathogen population. At a larger pathogen mutation rate, 
e.g. Aipath = 10"^ for all pathogen species, a much higher degree of MHC polymor
phism was attained. In a population of 5000 hosts nearly 100 different MHC alleles 
could then be found at a single locus (see Figure 9.6b). In this parameter region, the 
difference between the polymorphism arising under host-pathogen coevolution and 
under heterozygote advantage reached its maximum (see Figure 9.6b), and became 
similar to the simulations in which pathogen species had different mutation rates 
(see Figure 9.6a). 

The polymorphism under heterozygote advantage increased with the pathogen mu
tation rate. When all pathogens had a mutation rate of 100%, coevolution and 
heterozygote advantage again became identical, because the pathogens were no 
longer selected. Under heterozygote advantage, this led to the highest possible poly
morphism, because all MHC alleles have very similar fitness contributions when 
pathogens are random. At lower pathogen mutation rates, successful adaptation of 
MHC molecules to the pathogens caused differences between the MHC alleles, which 
reduced the degree of MHC polymorphism that was obtained under heterozygote 
advantage (see Section 3). Thus, these simulations confirm the conclusion that het
erozygote advantage is insufficient to explain the large population diversity of MHC 
molecules, and show that host-pathogen coevolution gives rise to natural levels of 
MHC polymorphism in large host populations. 

9.5 Discussion 

By simulating the evolution of hosts and pathogens, we have demonstrated that a 
large degree of polymorphism of MHC molecules naturally arises in host popula
tions infected by many different pathogens. The simulations confirm that there is 
selection favoring MHC heterozygosity [Doherty Sz Zinkernagel 1975, Hughes & Nei 
1988, Hughes &: Nei 1989, Takahata k Nei 1990, Hughes & Nei 1992]. Heterozy
gote advantage by itself, however, is insufficient to explain the large population 
diversity of MHC molecules, as it would require an unrealistic degree of similarity 
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Fig. 9.6. The impact of the host population size (a) and the pathogen mutation 
rate (b) on the degree of MHC polymorphism at generation 10,000. Data points in 
panel (a) are the average of three runs, differing in random seed; error bars denote 
the range of the three runs. Panel (b) gives simulations with 5000 hosts, and with 
equal mutation rates for all pathogen species. From: [Borghans et al. 2004] 

between MHC molecules. When hosts and pathogens coevolve, there is frequency-
dependent selection in addition, favoring the expression of rare MHC molecules [Snell 
1968, Bodmer 1972, Slade & McCallum 1992, Beck 1984]. Rare MHC molecules 
tend to provide protection against pathogens that avoid presentation by the most 
common MHC molecules in the population. We have shown that the MHC poly
morphism arising under host-pathogen coevolution is significantly larger than the 
polymorphism arising under selection for heterozygosity only. In addition, in our 
simulations there was no explicit disadvantage of expression of many different MHC 
molecules per individual. If a disadvantage of a high individual MHC diversity (at 
multiple loci) were to be taken into account, the effect of heterozygote selection on 
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the degree of MHC polymorphism would diminish at a sufficiently high individual 
diversity. Selection for expression of rare MHC molecules would, however, remain 
(results not shown). 

Although hundreds of different MHC molecules have been observed at the population 
level [Parham & Ohta 1996, Vogel et al. 1999], individuals express only a small 
fraction of this MHC diversity [Paul 1999]. We have disputed the widely held view 
that the individual diversity of MHC molecules is limited to avoid T cell repertoire 
depletion during self tolerance induction [Vidovic & Matzinger 1988, Parham et al 
1989a, Nowak et al. 1992, De Boer Sc Perelson 1993, Takahata 1995, Janeway k 
Travers 1997, Cohn 1985]. Using a mathematical model, we found that expression of 
extra MHC molecules would increase the number of T cell clones in the functional T 
cell repertoire, and that repertoire depletion would only occur at an unrealistically 
high individual MHC diversity. 

The MHC is not the only gene complex that is very polymorphic. Another well-
known example that is associated with immune defense to pathogens is the killer cell 
immunoglobulin-like receptor (KIR) gene cluster of NK cells [Carrington & Martin 
2006]. The KIR gene locus has a high diversity of haplotypes expressing different 
and variable numbers of genes. The inhibitory KIR bind self MHC molecules to 
prevent the NK response to cells with normal expression levels of MHC molecules. 
To recognize cells that have down-regulated MHC expression, i.e., the "missing self" 
hypothesis [Karre 1995], an individual's diversity of KIR should be sufficient to 
recognize all, or most, MHC alleles that are expressed within the individual. Due 
to the MHC polymorphism these vary, and the polymorphism of the KIR gene 
tends to double the repertoire of KIRs in heterozygous individuals, which increases 
the chance that all MHC molecules expressed with the individual are recognized. 
Finally, gene polymorphisms are not restricted to the immune system. For example, 
G-protein coupled receptors (GPCRs) form a large protein family with numerous 
single nucleotide polymorphisms (SNPs) in coding regions, which are associated with 
disease and drug efficacy [Balasubramanian et al. 2005]. 

The MHC is polymorphic in almost all vertebrate species for which this has been 
studied. The "Immuno Polymorphism Database" (IPD-MHC) collects information 
of the MHC diversity of a large number of species [Robinson et al. 2005] (see 
[www. eb i . ac.uk/ipd/mhc/index.html]). Mate choice experiments in several species 
have suggested that females attempt to increase the degree of MHC heterozygos
ity of their offspring by choosing mates with different MHC alleles [Potts et al. 
1991, Wedekind et al. 1995, Ober et al. 1997, Reusch et al. 2001], while another 
study suggests that MHC alone is not enough for individual recognition Hurst.pbs05. 
We have suggested that the major selection pressure driving MHC polymorphism 
of the population, and as a consequence MHC heterozygosity of the host, is the 
co-evolution between pathogens and their hosts. Generally, genetic variability of the 
host population decreases the average fitness of pathogens, i.e., this is not restricted 
to the MHC, and this is one of the major driving forces for the evolution of sex
ual reproduction [Hamilton et al. 1990]. It is not clear why a limited species has a 
much more restricted MHC diversity, e.g., cheetah [O'Brien & Yuhki 1999, Yeager 
& Hughes 1999], Eurasian Beaver [Ellegren et al. 1993], Moose [Mikko & Anders-
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son 1995], and African mole-rates [Kundu 8z Faulkes 2004], although recent bottle-
necking of the population may evidently play a role [Ellegren et al. 1993, Aguilar 
et al. 2004]. The MHC class I repertoire of chimpanzees was shown to be far less 
diverse than that of humans. This was proposed to be due to an "ancient selec
tive sweep" by a wide-spread viral infection, possibly SIV [de Groot et al. 2002]. 
Bottle-necks may also play a role in explaining small ethnic human populations that 
sometimes express particular HLA haplotypes at unexpectedly high frequencies (see 
[www.ncbi.nlm.nih.gov/IEB/Research/GVWG/IHWG/ihwg.cgi] for a number of ex
amples) . 

For other defence systems, e.g. the restriction-modification (RM) system which pro
tects bacteria against invading genetic material, two modes of diversity have been 
described: an individual-based mode in which every bacterium expresses all possible 
RM specificities, and a population-based mode in which each bacterium expresses 
maximally one RM system, with the total set of RM systems being expressed at the 
population level [Pagie & Hogeweg 2000]. [Pagie & Hogeweg 2000] demonstrated that 
such a population-based mode even exists in the absence of any costs for expres
sion of RM systems. Expressing a limited number of defence systems per individual 
allows individuals to be different from each other. Analogously, the population diver
sity of MHC molecules allows different individuals to respond differently to identical 
pathogens. Each host "samples" a small fraction of a pathogen's proteome for pre
sentation that differs from host to host. This unpredictability hampers the evolution 
of pathogen proteomes that can successfully evade antigen presentation. 

Evidence for host-pathogen coevolution has recently been found in the field of HIV. 
CTL escape mutants of HIV were shown to be associated with particular MHC class 
I alleles, suggesting viral evasion of presentation by those MHC molecules [Moore et 
al. 2002, Leslie et al. 2005]. On the other hand, common MHC alleles appeared to 
correlate with absence of viral mutants, suggesting successful previous adaptation of 
HIV to common MHC molecules [Moore et al 2002, Leslie et al. 2005]. Another evi
dence for frequency-dependent selection on MHC alleles in man was discovered when 
MHC alleles were grouped together in "supertypes" that are based on similarities in 
their binding motifs [Sette &; Sidney 1999, Lund et al. 2004], see Chapter 10. The fre
quency of different MHC supertypes in a large group of HIV-infected men was found 
to be inversely correlated with viral RNA loads [Trachtenberg et al. 2003], and com
mon HLA supertypes were shown to be associated with a lack of CTL responses to 
known HIV-1 epitopes [Scherer et al. 2004]. One has to be cautious while interpreting 
these results, however, because we have recently showed that "rare and protective" 
HLA supertypes B58s and B27s that were found in these studies have a stronger 
preference for epitopes from "constrained" p24 [Von Schwedler et al. 2003, Leslie et 
al. 2004, Peyerl et al. 2004] than the non-protective supertypes B7s and Als, which 
have a stronger preference for "polymorphic" Nef [Ke§mir, Borghans h De Boer, in 
prep.]. For the most common HLA-supertype A2s the percentage of known epitopes 
per protein closely resembled the expected frequency distribution. Because HLA 
supertypes associated with slow disease progression preferentially present peptides 
from the most constrained parts of the HIV-1 genome, we predict that these pro
tective alleles remain protective even in populations where they are more common, 
as is the case in Botswana [Novitsky et al. 2003]. Finally, the classification of MHC 
alleles into supertypes fails to fully capture their functional relationships, because 
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different MHC alleles within one supertype may have quite different associations 
with disease. For example, the HLA-B*3503 allele is associated with fast progres
sion to AIDS, while HLA-B*3501 from the same B35s superfamily is not [Gao et al. 
2001]. 

Another example that was interpreted as viral adaptation to host antigen presenta
tion pathways was the identification of HIV proteome regions with few immunogenic 
class I epitopes for a large variety of HLA alleles [Yusim et al. 2002]. As these re
gions contained very few human proteasome cleavage sites, (Chapter 8), it seemed 
that HIV was exploiting the predictability of the, hardly polymorphic, proteasome 
and TAP molecules [Kesmir et al. 2002]. Recent work however casts doubt on this 
because we fail to find evidence for an increase of HIV escape from proteasomal 
cleavage and TAP binding, and we think that the low density of class I epitopes is 
due to the hydrophilic nature of these regions [Lucchiari-Hartz et al. 2003] [Schmidt, 
Ke§mir & DeBoer, in prep.]. Due to the MHC polymorphism the particular pro
teasomal cleavage sites and TAP ligands that actually give rise to immunogenic 
peptides remain variable among different individual hosts. For a co-evolving virus 
like HIV the important cleavage and binding sites therefore remain unpredictable. 
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A Appendix 

Requiring that the marginal fitness Wi = Y^^=\ Pjfij is the same for all alleles i, one 
obtains fi{l — Pi) = fj{l — Pj) for all alleles i and j . By expressing all pj by the 
same pi and summing the n equations one obtains 

P. = l - ^ | . (9.3) 

where / = f^/Yll=i ff^ ^^ ̂ ^^ harmonic mean of the n allele fitness contributions. 
Thus, MHC alleles with a too low fitness contribution fi will not be present at a 
positive frequency Pi, i.e. cannot co-exist, because f/fi becomes too large. Note that 
the basis fitness value P has canceled [van Boven Sz Weissing 2001]. 

For a novel allele with fitness contribution /n+i to invade into an established poly
morphism of n alleles, its marginal fitness has to exceed the marginal fitness of the 
other alleles [van Boven & Weissing 2001, Weissing & van Boven 2001]. Writing 
yJn+i > Wi this yields 
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n n 

J2Pj{fn+i + fj) > YlPjUi + fo) - Pifi . (9-4) 
j=l 3=1 

which can be simplified into 

fn+i>fi{l-Pi) . (9.5) 

Substituting pi from Eq. (9.3) gives Eq. (9.2) in the text. 

To obtain Figure 9.3 we substitute fi = (j)^~^ into Eq. (9.2) in the text, where 
0 = (1 — s), one can test the invasion of the n + 1*̂  allele, and simplify to obtain 

i:<t>'-'-Y^>n, (9.6) 
i=0 ^ 

which can be used to solve the critical s for invasion into any polymorphism of n 
alleles. 
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S u m m a r y . Human leukocyte antigen (HLA) recognizes antigenic fragments and 
presents them to T cells. HLA is polymorphic. There are over 2000 different HLA 
alleles at present and the number is constantly increasing. However, antigen binding 
studies are limited to a small proportion of these alleles; the binding specificities 
of most alleles are unknown. Several research groups have attempted to partition 
different HLA alleles into groups. In this chapter previous classifications are reviewed 
and we present two chemometric approaches to classifying class I HLA alleles. The 
program GRID is used to calculate interaction energy between protein molecules and 
defined chemical probes. These interaction energy values are imported into another 
program GOLPE and used for principal component analysis (PCA) calculation, 
which groups HLA alleles into supertypes. Amino acids that are involved in the 
classification are displayed in the loading plots of the PCA model. Another method, 
hierarchical clustering based on comparative molecular similarity indices (CoMSIA) 
is also applied to classify HLA alleles and the results are compared with those of 
the PCA models. 

10.1 Introduction 

Major histocompatibility complex (MHC) molecules are polymorphic membrane 
glycoproteins [Zinkernagel 1986]. Human MHCs are also called human leukocyte 
antigen, often abbreviated to HLA [Clark & Forman 1984]. There are two classes of 
HLA, class I and class II. Class I HLA is present on most nucleated cells, including 
the surfaces of lymphocytes, which have 1000 to 10000 HLA molecules per cell [Goust 
1993]. Class II HLA is mostly expressed on antigen presenting cells (APC) such as 
macrophages, B cells and dendritic cells. Partly as a result of their importance 
in mediating tissue rejection, sequencing has identified MHC proteins as amongst 
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the most polymorphic of all human gene products. According to the international 
ImMunoGeneTics information system (IMGT), there are over 2000 different HLA 
class I and II alleles and a significant number of new alleles are discovered every 
year [Robinson et aL 2003]. In Chapter 9, Borghans et aL explore the nature and 
origin of MHC diversity in more detail. 

MHCs exhibit much polymorphic amino acid variation, and seemingly trivial al
terations in the identity of binding site amino acid residues give rise to differences 
in peptide selectivity exhibited during peptide binding. Peptide binding assays are 
the most widely-used way of identifying T cell epitopes and measuring the affinities 
of peptides binding to MHC. Such assays include direct binding and the quanti
tative measurement of radio- or fiuorescence- labeled peptides bound to the MHC 
molecules [Chen & Parham 1989, Schumacher & Heemels 1990, Cerottini & Luescher 
1991, Christinck &; Luscher 1991, Kast &: Melief 1991, Mendez-Samperio Sz Jimenez-
Zamudio 1991, Stuber & Dillner 1995, Wauben & van der Kraan 1997, Levitsky &; 
Liu 2000]. Several databases have been set up to store peptide binding affinity data, 
such as MHCPEP [Brusic et aL 1998], MHCBN [Bhasin & Singh 2003], and AntiJen 
[Blythe et aL 2002, McSparron et aL 2003, Toseland et aL 2005]. 

Many HLA alleles have been demonstrated to bind peptides with similar anchor 
residues [Southwood et aL 1998]. This has led to the concept of MHC supertypes: 
the idea that MHCs with distinct sequences can be classified into separate groups, 
each of which displays equivalent, if not necessarily identical, specificities when bind
ing peptides. The celerity of experimental research will be greatly accelerated if one 
could identify a procedure able to cluster HLA alleles with similar specificities. Sev
eral research groups have sought to classify HLA alleles in this way, using a wide 
variety of different methods. Examples of such disparate methodologies include se
quence analysis [Lawlor & Warren 1991], structural analysis [Chelvanayagam 1997], 
use of geometrical similarity matrix methods [Cano & Fan 1998], and motif search 
[Sette & Sidney 1998, Lund et aL 2004]. 

We have recently developed and applied chemometric GRID/CPCA and hierarchi
cal clustering methods to the identification of MHC supertypes [Doytchinova et aL 
2004b]. Within vaccinology, HLA classification, using bioinformatics methods, can 
potentially reduce the overall experimental burden by rending unnecessary the indi
vidual study of every allele. It can thus accelerate the discovery of both epitope-based 
vaccines, and other immunotherapies, that are targeted at multiple alleles. In the 
remainder of this chapter, we will explore attempts, both ours and those of others, 
to address the problem of finding and populating MHC supertypes. 

10 .1 .1 E v o l u t i o n a r y A n a l y s i s 

An early attempt to classify MHC molecules is from protein sequence studies [Lawlor 
& Warren 1991]. Lawlor compared the sequences of 14 gorilla class I MHC alleles 
with HLA-A, B and C alleles in human and MHC in chimpanzees. Sequences of 
human, gorilla and chimpanzee MHC alleles are similar but not identical, as most 
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of the polymorphic residues appear in the same region. Also genes at A, B and C 
locus of gorilla and chimpanzee MHCs are similar to HLA-A, HLA-B and HLA-C, 
respectively. Phylogenetic trees are generated for A, B and C genes and it is found 
that HLA-A alleles are divided into five families: A2, A3, A9, AlO and A19. Two 
divergent groups of HLA-C alleles are found, one containing Cw*0701 and Cw*0702, 
the other with Cw*0101-Cw*0601 and Cw*1201. HLA-B is the most polymorphic 
locus in the human HLA genes and no consensus group is found in the study. Based 
on Lawlor's research, Jakobsen et al. aligned DNA and protein sequences of the 
HLA-A alleles. The DNA alignment showed that family signatures are not focused 
on one region but are distributed throughout the sequence. The protein sequence 
alignment revealed that position 62, 97 and 114 in the binding site are important in 
the classification [Jakobsen & Gao 1998]. 

Another HLA grouping based on evolutionary analysis was undertaken by McKen-
zie et al. in 1999 [McKenzie Sz Pecon-Slattery 1992]. In their study, phylogenetic 
trees were built using three methods: maximum parsimony, distance-based mini
mum evolution and maximum likelihood. Different classifications were carried out, 
based on either whole protein/nucleotide sequence, sequence of the binding site, or 
sequence excluding the binding site. Two clusters were found for HLA-A class: one 
with Al , A3, A9, A l l , A36, A*8001 and some of the A19 and the other with A2, 
AlO, A28, A*4301 and the other A19 members. HLA-B and HLA-C did not form 
any consistent clusters. 

10.1.2 Structural analysis 

The binding of peptides to MHC molecules is influenced by the interactions be
tween the side chains of bound peptides and the binding pockets within the peptide 
binding site. In contrast to data driven models, which rely on the accumulation 
of significant quantities of binding data, an important approach seeks a structural 
understanding of peptide binding by analysing the structure of MHC receptor bind
ing sites. These allow connections to be identified between diff'erent MHC alleles 
at the functional level. Any significant similiarity apparent between binding sites 
should also be mirrored in the overall peptide selectivities exhibited by different 
MHCs. Comparative investigation of such relationships should allow the prediction 
of similarities in peptide selectivity and the effective grouping of different alleles. 

Kurata and Berzofsky studied the interaction of peptide analogs with the MHC 
binding site and their comcomitant interactions with the T cell receptor (TCR). 
It was identified that the same peptide can bind to class II allele I-Ed in more 
than one conformation. Moreover, the change in peptide conformation did not affect 
the recognition by T cells, indicating that the TCR may interact with different re
gions of the peptide in different conformations [Kurata & Berzofsky 1990]. Similarly, 
Gopalakrishnan and Roques simulated the interactions between a peptide and the 
H-2Kd binding site using the molecular dynamics program AMBER. They found 
that the binding orientation of the peptide may be dependent on the sequence and 
structure of the peptide and may be allele specific [Gopalakrishnan & Roques 1992]. 
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In 1996, Chelvanayagam studied binding pockets and grouped HLAs according to 
the amino acid composition in each pocket [Chelvanayagam 1997]. HLA molecules 
within one group have the same or similar amino acids in a particular binding pocket 
are expected to bind to the same peptide. The analysis was used to classify HLA 
molecules that have not been studied experimentally and thus to predict their bind
ing motif. Although classified separately, groups of HLA-B and C molecules share 
the same binding specificity with HLA-A if they have the same amino acids in the 
binding site. The drawback to this form of classification is that since the classifi
cation is done according to the residues surrounding one position of the peptide, 
for a nonamer peptide, the HLA alleles are classified nine times and the same allele 
is often found in different groups in different classifications. A similar study has 
been carried out by Zhang et al., in which the binding pockets of class I MHC are 
classified into families by modelling the structures of MHC-peptide complexes using 
crystal structures as templates. Five families were defined according to specificities 
in the pocket B, and three families were defined based on specificities inside pocket 
D. Three more families were also defined for alleles with a joint specificity of pocket 
C and D [Zhang et al 1998]. 

10.1.3 Geometrical similarity matrix 

Cano et al. clustered the HLA-A and HLA-B alleles by constructing similarity matri
ces [Cano & Fan 1998]. MHC molecules were compared in a geometric space, where 
each amino acid occupied one dimension. The similarities among chemical proper
ties of the twenty amino acids such as polarity and charges were compared and the 
results were stored in an amino acid similarity matrix. Another reference matrix, 
the binding affinity matrix was generated by calculating the flexibility of each amino 
acid side-chain at each position of the peptide. The similarity among MHC alleles 
was measured using both experimental peptide elution data and by comparing the 
alleles using the similarity matrix. The method identified three clusters as listed in 
table 10.4. 

10.1.4 Sequence and binding motif approach 

Another way of classifying HLA molecules is to group alleles with similar binding 
motifs together. Class I HLA molecules have been classified into superfamilies by 
Sette and Sidney using this approach [Sidney et al. 1996a]. Sidney et al. defined four 
supertypes by examining reported cross-reactive epitopes [Sidney et al. 1996a]. They 
then compared the sequences corresponding to the MHC binding pockets B and F. 
Experimentally confirmed binding motifs of the alleles were also examined, and 
those with similar motifs are grouped into one supertype [Southwood et al. 1998]. 
The supertypes identified in the paper are listed in table 10.4. The same group 
later published review papers in which the four supertypes were revised. A*0207 
was added to the A2 supertype and B*1508 and B*5602 were added to the B7 
supertype[Sette & Sidney 1998, Sette et al. 1989]. Recently A*2902 and A*3002 are 
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added to the Al supertype [Sidney et al. 2005]. Sette and Sidney carried out further 
analysis in 1999 and defined a total of nine supertypes including the previously 
defined supertypes [Sette et al. 1989]. The nine supertypes were estimated to cover 
99% of the world population (table 10.4) [Sette & Livingston 2001]. Table 10.4 lists 
the supertypes and alleles within each supertype. 

Based on Sette's study, [Lund et al. 2004] classified HLA-A and B molecules using 
specificity matrices. The nonamer ligands of all HLA-A and B molecules were col
lected from SYFPEITHI and MHCPEP and were aligned. The frequencies of each 
amino acid at each position were summarised as a matrix, and this was used for a 
cluster analysis. The resulting HLA super families were organised into a consensus 
tree. In their results, the A26 alleles were separated from the Al cluster described 
by Sette, and a new B8 superfamily was defined. The other superfamilies were the 

It should be noted that class II HLA molecules have also been classified using a 
sequence approach. Chelvanayagam defined the HLA-DR roadmap by allele bind
ing specificities and the polymorphic residues inside the binding site. The impor
tant residues were identified by studying the crystal structures of known HLA-DR-
peptide complexes [Chelvanayagam 1997]. HLA-DP [Castelli k, Buhot 202] and DQ 
[Baas & Gao 1999] supertypes have also been defined based on a combination of bind
ing studies to define motifs together with structural modelling of the peptide-MHC 
complexes. Reche and Reinherz used multiple sequence alignment to find important 
residues in 774 class I and 485 II HLA molecules. Consensus sequence patterns were 
obtained for the binding sites of HLA-A, B, C, DP, DR and DQ groups [Reche & 
Reinherz 2003]. 

10.2 GRID/CPCA AND Hierarchical Clustering 

Class I HLA supertypes have been defined by Doytchinova et al. using GRID/CPCA 
combined with hierarchical clustering based on comparative molecular similarity in
dices (CoMSIA) fields. The GRID program identifies the energetically favoured or 
disfavoured regions on molecules with known three-dimensional structures. Many 
molecules can be included in one calculation [Cruciani & Watson 1994]. A selec
tion of chemical probes is included in the program; each probe represents atoms or 
functional groups with different properties. GRID calculates the interaction energy 
between selected chemical probes and each of the molecules. Molecular interaction 
fields (MIFs) between diff'erent chemical probes and a set of diff'erent HLA proteins 
were calculated in GRID, and these were used to build PGA and CPCA models in 
GOLPE. 

The program Generating Optimal Linear Partial least square Estimations (GOLPE) 
[Cruciani & Watson 1994] has one module for PGA calculation. PC A decomposes a 
matrix X into two smaller matrices: the scores matrix T and the loading matrix P' , 
which explain the overall variance of the X matrix. The scores matrix contains a few 
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variables M, that is, the principal components (PC), which can be used to describe 
the observations. The loading matrix reveals the relationship between the variables 
in the original matrix and the principal components. Plots of the observations in the 
multidimensional space are called the scores plot, which identifies similarities and 
differences within the observations and groups them accordingly, while the load
ing plot relates the original variables to the PCs and identifies variables that are 
important in distinguishing groups of observations. 

When more than one probe is used in the GRID calculation, the data generated by 
different probes are grouped into blocks, and they are often analysed by hierarchical 
PC A methods such as consensus PC A (CPCA). The advantage of CPCA compared 
to PCA is that it compares the relative importance of each block in the calculation 
and makes a 'consensus' clustering of the objects. CPCA uses the same underlying 
principle as PCA: a CPCA model tries to explain the overall variance of the orig
inal data matrix. The algorithm used in CPCA is an adaptation of the NIPALS 
algorithm used in PCA [Wold & Hellberg 1987]. Like PCA, CPCA calculates the 
principal components and gives the scores and loading matrix. In addition, CPCA 
also calculates the importance of each data block. It calculates the scores and the 
loading matrix for each probe used, and also returns the weight matrix that can 
illustrate the contribution of each probe to the overall scores. 

Cluster analysis is a process of grouping of observations into subsets or clusters, the 
grouping is dependent on the similarities between each observation. Commonly used 
clustering methods are hierarchical clustering and k-means clustering, etc. Hierar
chical clustering based on the agglomerative method is used in HLA classification, in 
which observations are separated into n clusters at the beginning of the clustering, 
each cluster contains one observation. The distance between two clusters is propor
tional to the similarities of the observations. Clusters with the shortest distance are 
merged and the distance between the new cluster and others is computed. These 
steps are repeated until there is only one cluster left. The cluster analysis used is as 
implemented in Sybyl6.9, complete Hnkage clustering is used in distance computa
tion, in which the maximum distance between data points in two clusters is used. 
The clustering process makes use of the five molecular interaction fields calculated 
by CoMSIA. 

A total of 783 class I HLA sequences were found in the IMGT/HLA database and 
were included in the classification. The sequences were selected on the basis of the 
differences at protein sequence level. The classification is defined according to the 
scores plots of the CPCA model and the dedrograms obtained from hierarchical clus
tering. The scores plot showed the clustering of the HLA alleles, whereas the loading 
maps highlighted regions in the peptide binding site that contributed significantly 
in clustering different super families. Amino acid fingerprints are identified from the 
loading plots of the CPCA models, the fingerprints are the basis of the classification 
and can be used for future classification. 

Three HLA-A clusters are defined from the scores plot of the CPCA model and 
hierarchical clustering, A2, A3 and A24 (Fig 1, Fig 2). In the scores plot, the first 
component of the CPCA model separated A23 and most of the A24 molecules on the 
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left, with negative PCI scores, from the rest of the HLA-A molecules. The second 
principal component separated the HLA-A*1, A*l l , A*25, A*26, A*29, A*03, A*31, 
A*32, A*33, A*34, A*36, A*66, A*68 and A*74 families with positive PC2 scores 
from the others. Therefore, the CPCA analysis revealed three clusters as demon
strated in the 3D scores plot: the A3 cluster on the top right of figure 10.4, including 
the alleles A*01, A*03, A*l l , A*25, A*26, A*29, A*30, A*31, A*32, A*33, A*34, 
A*36, A*4301, A*66, A*74 and A*8001. Most of the A*68 alleles (except A*6802 
and A*6815, which were in the A2 cluster) were also included in the A3 family. The 
A24 cluster is on the top left of the figure including the A*23 and A*24 alleles. The 
A2 cluster is at the bottom of the figure, with most of the A*02 alleles. Other alleles 
in the A2 cluster were A*57, A*6802, A*6815, A*6823 and A*6901 (Table 10.4). 

Hierarchical clustering analysis using CoMSIA fields also defined three clusters (Fig. 
2). The cluster on the left includes HLA alleles A*02, A*25, A*26, A*3401, A*3405, 
A*4301, A*66, A*6802, A*6815, A*6823 and A*6901. This cluster was the A2 clus
ter. The A24 cluster was well distinguished and included A*23 and A*24 alleles. 
Finally, the A3 cluster included A*01, A*03, A*l l , A*29, A*30, A*31, A*32, A*33, 
A*36. Some A*34 and A*68 alleles, A*74 and A*8001 were also in this cluster. 

The loading plot of the HLA-A model highlighted position 9, 97, 114 and position 
116 (Fig 10.3). Sequence alignment of HLA-A molecules showed that most of the 
A24 alleles had dominant polar amino acid Ser at position 9, while the A3 molecules 
had aromatic amino acids Tyr or Phe at position 9. 

The scores plot of the HLA-B CPCA model reveals that the HLA-B molecules are 
divided into three clusters (Fig 10.4, Table 10.4): B7 (B*07, B*08, B*14, some B*15, 
B*18, B*35, B*3705, B*3904, B*41, B*42, B*45, B*48, B*50, B*55, B*56, B*6701, 
B*6702, B*7301, B*78, B*81, B*82 and B*83), which is on the left of the Y axis, 
B27 (B*27, B*37, B*38, B*4013, B*4019 and B*4028) in the top right corner of the 
plot, and B44 (B*13, B*44, B*47, B*49, B*51, B*52, B*53, B*5607, B*57, B*58 and 
B*5901). Similar clusters are found using hierarchical clustering method, in which 
three clusters (B7, B27 and B44) are identified (Fig 5). 

The PCI loading plot showed that two areas were important in the classification 
(Fig 10.6). Position 63 and 66 were inside pocket A and B. Position 66 was conserved 
while position 63 was polymorphic with two amino acid variations Glu and Asn. The 
other important area in the loading plot was around position 77 and 81 in the pocket 
F. Asn, Ser and Asp were found at position 77, and Leu and Ala at position 81. 

Results the HLA-C model is in figures 10.7 and 10.8, in which HLA-C molecules were 
divided into two clusters. Cw*01, Cw*03, Cw*07, Cw*08, Cw*12 and Cw*16 are 
grouped into one cluster, and Cw*02, Cw*03, Cw*04, Cw*05, Cw*06, Cw*15, Cw*17 
and Cw*18 are in the second cluster. Some of the Cw*03, Cw*07 and Cw*12 are also 
grouped into the second cluster. The first cluster is named CI and the second cluster 
is named C4. The result from hierarchical clustering gave nearly identical groups, 
with only eight amino acids mis-placed Cw*0308, Cw*0310, Cw*0701, Cw*0706, 
Cw*0716, Cw*0718, Cw*1208 and Cw*1404 (Table 10.4). 
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The PC2 loading plots showed that positions 70, 74, 77 and 81 of the HLA-C 
molecules are involved in the classification (Fig 9). Among the HLA-C molecules, 
only position 77 was polymorphic. The amino acids presented at this position were 
Ser and Asn. The molecules in the C4 class all have Asn at position 77. The ones 
in the CI cluster, on the other hand, all have serine at this position. As Asn is 
more polar than serine, they are more favoured for interaction with polar probes 
and hydrogen-bond formation. 

Class I HLA classification using GRID/CPCA and hierarchical clustering based 
on CoMSIA fields exhibit, on average, a 77% consensus. HLA-A classification by 
both methods was 88% identical. HLA-B classification by the two methods gave a 
slightly lower consensus (68%), which may be because the group had the largest 
number of molecules among the three (447 HLA-B alleles) and the binding site 
consisted of more amino acids. The classification of the cluster B27 was debatable, 
as most of the molecules in the B27 cluster, as defined by hierarchical clustering, 
were in the B7 cluster in the CPCA model. The HLA-C classification gave the best 
agreement using the two methods (93% consensus). Only 8 molecules were classified 
into different subtypes by the two methods. Molecules that have been classified 
into different clusters by the two methods were considered as outliers as it was not 
possible to classify them properly into clusters. They require future re-classification 
using other, more sensitive techniques. A closer look at the protein sequence level 
showed that these outliers do not significantly resemble the classified alleles. For 
example, A*2501 - A*2503 alleles had Tyr at 9 and Asp at 116, which were identical 
as A* 11 alleles, but they also had Glu at position 114 fike the A*31 and A*32 alleles. 

The GRID/CPCA procedure grouped all class I HLA-A, B and C alleles into several 
supertypes. Of these alleles, A*0201, A*0202, A*0204, A*0206 and A*0207 had 
been grouped into the A2 supertype by binding studies [del Guercio & Sidney 1995, 
Southwood et al. 1998, Sudo Sz Kamikawaji 1995, Sidney et al. 1996a, Sidney et al. 
1996b] and motif studies [Rammensee et al. 1999]. All these alleles were grouped into 
the A2 supertype in the GRID/CPCA study with the exception of A*0204, which, 
like the A3 alleles, possessed Met at position 97 and was classified as belonging to 
the A3 family. A*0204 differed from A*0201 by having one amino acid mutation 
Arg -> Met at position 97. Met97 is inside pocket F. The side chain of Met97 is 
smaller compared with Arg, therefore increasing the volume of pocket F. However, 
the A*0204 binding motif (L2L9) was closer to A*0201, therefore it was possible 
that A*0204 is an outlier from the A3 superfamily. The previously classified A2 
supertype also included A*6801 and A*6901, which were in the A2 superfamily in 
the present study. 

Apart from the A2 supertype, other HLA-A supertypes are less well studied. 
There were three more HLA-A families in Sette's classification, the Al superfam
ily (A*0101, A*2501, A*2601, A*2602 and A*3201), the A3 superfamily (A*0301, 
A*1101, A*3301, A*3101 and A*6801) and A24 superfamily (A*2301, A*2402, 
A*2403, A*2404, A*3001, A*3002, A*3003). The Al and A3 families were grouped 
into the A3 superfamily in the GRID/CPCA analysis. The A*23 and A*24 alleles 
were in the A24 superfamily, but A*3001, A*3002 and A*3003 were placed in the 
A3 superfamily. Our work was also compared with the classification by Lund et al.. 
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which produced a set of five distinct HLA-A clusters (Al, A2, A3, A24, A26) using 
both motif information and binding site structure analysis [Lund et al. 2004]. The 
Al , A3 and A26 cluster in Lund's classification were grouped into the A3 super-
family in the present classification, although the A2 and A24 families in the two 
analyses were in good agreement. 

HLA-B7 (B*07, B*35, B*51, B*53,B*54, B*55, B*56, B*67, B*78), B27(B*1401-02, 
B*1503, B*1508, B*1509, B*1510, B*1518, B*2701-08, B*3801, B*3802, B*3901-04, 
B*4801-02, B*7301) and B44 (B*37, B*4001-2, B*4006, B*41, B*44, B*47, B*49, 
B*50) families have been previously classified and tested in many binding experi
ments [Southwood et al. 1998, Sidney et al. 1996a, Doolan & Hoffman 1997, Lamas 
et al. 1998, Sidney et al. 2003]. Most of the B7 alleles in Sette's classification were 
in the B7 cluster defined by GRID/CPCA, apart from B*51 and B*53, which were 
in the B44 cluster. Alleles in the B7 and B44 family of Sette's classification were 
found scattered within the B7, B27 and B44 superfamilies in the present analy
sis. In Sette's classification two more clusters B58 (B*1516-17, B*5701-02, B*5702, 
B*5708) and B62 (B*1301, B*1302, B*1501, B*1502, B*1506, B*1512-14, B*1519, 
B*1521, B*4601, B*4652) were defined. Molecules in the B62 cluster of Sette's clas
sification were located in either the B7 or the B44 superfamilies in the GRID/CPCA 
analysis. The B58 cluster in Sette's classification can be found in the B44 cluster 
in the present study. Compared with Lund's classification (B7, B8, B27, B44, B58, 
B62), the B8 cluster was included in the B7 supertype and alleles in the B58 and 
B62 cluster were in the B7 or B27 cluster in the current analysis. 

Although there is no previous HLA-C classification available for comparison, we 
can nonetheless make the interesting observation that the NK cell inhibitor re
ceptor KIR2DL can be divided into two groups based on their HLA-C specificity. 
KIR2DL1 recognised HLA-Cw*2, Cw*4, Cw*5 and Cw*6, all of which possessed 
Asn77, whereas KIR2DL2 recognised HLA-Cw*l, Cw*3, Cw*7 and Cw*8, which 
had Ser at position 77 [Fan & Long 2001]. The specificity of KIR2DL was in agree
ment with our HLA-C classification, which suggested that position 77 was important 
in substrate binding: HLA-C molecules with the same residue at position 77 tend 
to share the same specificity. 

A hierarchical clustering study based on HLA binding pockets has also been carried 
out, in which HLA-A molecules are classified according to molecular specificities of 
each of the six binding pockets. Three clusters have been defined according speci
ficities of pocket A (table 10.4. The first cluster is consisted of Al (A*01 and A*l l ) , 
A*0208, A*16, A*20, A*29 and A*56, most of the A3 (A*03, A*30 A*31 A*32 and 
A*36), A*6810, A*6813, A*6814 alleles, A*7401-09 and A*8001. The second cluster 
includes A*25, A*26, A*33, A*34 and most A*68 alleles. Most of the A*02 alleles 
are present in the third cluster together with A*23, A*24, A*29, A*4301, A*6601, 
A*6604, A*6801-09, A*6815-23, A*6901. Two residues fining pocket A are identified 
to be important in the classification: position 63 and 66. Alleles in the first and sec
ond clusters all have polar amino acid Asn at position 66, while alleles in the third 
cluster have basic amino acid Lys at this position. Alleles in the first cluster have 
acidic Glu63 but those in cluster 2 have Asn63. 
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Two clusters are identified from the hierarchical clustering based on CoMSIA fields 
of pocket B (table 10.4). Cluster Bl has A*01, A*0201-33, A*0236-60, A*23, A*24, 
A*25, A*26, A*30, A*31, A*32, A*33, A*4301, A*6803-05, A*74 and A*8001. The 
second cluster includes A*0234-35, A*2424, A*29, A*34, A*0301-10, A*1101-04, 
A*6601-01, A*6601-02, A*6604, A*68 and A*6901. The classification is based on a 
single amino acid at position 70. Alleles with basic amino acid His70 are in cluster 
1, while those with Gin70 are in cluster 2. 

The HLA-A alleles are separated into two clusters according to specificities in pocket 
C (table 10.10). The first cluster include mainly A*01, A*0211, A*0235, A*0248, 
A*03, A*l l , A*23, A*24, A*25, A*26, A*29, A*30, A*31, A*32, A*34, A*36, A*66, 
A*6801-04, A*6806-14, A*6816-19, A*6821-23, A*6901 and A*7401-05, A*7408-09, 
while most of A*02, A*1106, A*2428, A*2430, A*2603, A*2606, A*3009, A*6805, 
A*6815, A*6820, A*7406 and A*8001 are in the second cluster. One main feature 
of pocket C is position 74, alleles within cluster CI all possess acidic amino acid 
Asp74, whereas alleles within cluster C2 have basic His74. 

There are four clusters defined for pocket D (table 10.11). Cluster Dl includes all 
A*01 except A*0106, A*0249, A*1108 and A*36. The second cluster also has a small 
group of alleles including A*0310, A*1101-07, A*2417, A*2905, A*3402 and A*6801, 
A*6803-05, A*6807-23. The third cluster is consisted of A*0106, A*0201-40, A*0242-
48, A*0250-51, A*0253-60, A*0301, A*0304-09, A*2301-09, A*2402-16, A*2418-38, 
A*2901-07, A*3103-06, A*3204, A*3402-04, A*6802, A*6808, A*6815, A*6901 and 
A*8001. The fourth cluster includes A*25, A*26, A*3004, A*3006, A*3202, A*3401 
and A*3405,A*4301 and A*66. A*0241, A*0252, A*3001-03, A*3007-12, A*3101-02, 
A*3105, A*3107-09, A*32, A*33 and A*74 are grouped in the fifth cluster. Amino 
acids fingerprint for this classification is consisted of position 114 and 156. Alleles 
with basic amino acids such as Arg or His at position 114 are grouped into the 
first three cluster and alleles with Phe or Gin are in the last cluster. The first three 
clusters are further separated by polymorphism at position 156. Alleles with Arg, 
Gln/Trp and Leu are grouped into cluster 1, 2 and 3, respectively. 

Four clusters are identified for pocket E (table 10.12). The first cluster is composed of 
serotype A*01, A*03 (A*0302, A*0307, A*0310), A*1101-02, A*1104-07, A*1109-14, 
A*2612, A*2618, A*29, A*31, A*32, A*33, A*36, A*6801, A*6803-05, A*6808-ll, 
A*6813, A*6814, A*6816, A*6818-23, A*74 and A*8001. The second cluster is con
sisted of A*0301, A*0304-06, A*0308-09, together with A*1103, A*1108, A*2504, 
A*2608, A*2905, A*3204 and A*34. The third cluster includes most of A*02, A*23, 
A*24, A*30, A*6802, A*6806, A*6807, A*6815, A*6817 and A*6901. The last clus
ter has A*0203, A*0213, A*0226, A*0238, A*2418, A*25, A*26, A*3401, A*3405, 
A*4301 and A*66. The classification can be explained by two amino acids at posi
tion 116 and 152. Alleles with acid Asp at position 116 are grouped in cluster 1 and 
2, while alleles in cluster 3 and 4 have bulky amino acid His or Tyr. 

Only two clusters are found for pocket F (table 10.4). The first one consists of 
A*01, A*0301-10, A*l l , A*2417, A*2501-04, A*26, A*29, A*31, A*32, A*33, A*34, 
A*36, A*4301, A*6801, A*6803, A*6808-14, A*6816, A*6818-23, A*74 and A*8001, 
and the second cluster has A*02, A*23, A*24, A*2602, A*30, A*6802, A*6806-
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07, A*6815, A*6817 and A*6901. One position is identified to be important in the 
clustering process, position 116. Alleles in the first cluster possess negatively charged 
amino acid Asp at position 116, while those in the second cluster have aromatic Tyr 
at this position. 

Compared with classifications on the whole binding site, the pocket classification 
considers one pocket at a time, therefore one allele may be classified into different 
groups in different classifications. For example, pocket B of some A*02 and A*03 
alleles favour aliphatic amino acids therefore they are in the same group. However, 
pocket F of the A*03 alleles favours charged amino acids while A*02 alleles accept 
small aliphatic amino acids and they are in different clusters. In contrast to the three 
amino acids fingerprint from whole binding site classification, eight amino acids (po
sition 63, 66, 70, 74, 114, 116, 152, 156) are identified in the pocket classification, 
indicating that more amino acids of the binding site are important in peptide speci
ficity. However, as peptide binding motifs are only available for a small group of 
alleles, therefore the current classifications can not be validated. 

10.3 Class II HLA Classification 

Class II HLA alleles have also been classified by clustering. Doytchinova et al. 
applied hierarchical clustering using CoMSIA fields and non-hierarchical cluster
ing based on z-scores. The hierarchical clustering follows the same procedure as 
class I classification described above. Nonhierarchical clustering uses five z de
scriptors to describe hydrophobicity, steric bulk, polarity and electronic effects 
of the HLA molecules. K-means clustering is applied to the set and the initial 
number of k seeds is equal to the number of clusters obtained from the hier
archical clustering. The known crystal structures of class II HLA are used as 
templates in homology modelling. Like the class I HLA classification, the class 
II alleles are grouped into twelve families. HLA-DR alleles are classified into 
DRl , DR3, DR4, DR5 and DR9 supertypes (Table 10.4). Hierarchical clustering 
groups DRB1*01-11, DRB1*1501-11 and DRBl*1601-08 in DRl, DRBl*0701-07, 
DRBl*0301-25, DRB3*0101-10, DRB3*0301-03, DRB1*0422 and DRB1*1107 in 
DR3, DRB1*0401, 03-48, DRB1*1113, 17, 26, 34, 42, DRB1*1309, DRBl*1401-48, 
DRB1*1001, DRB4*0101-06 in DR4, DRB1*0402,12,15, 25, 36, 37, 47, DRB1*1101-
47, DRBl*1201-09, DRBl*1301-62, DRB1*1403, 16, 22, 25, 27, 40, DRB1*0801-
25 in DR5, DRBl*0901-02, DRB5*0101-12, DRB5*0202-05 in DR9. Nonhierarchi
cal clustering classifies DRB1*01-11, DRB1*1501-11 and DRBl*1601-08 in DRl, 
DRB3*0101-10, DRB3*0201-18, DRB3*0301-03, DRB1*1333, DRB1*1447 in DR3, 
DRB1*0401, 03-48, DRB1*1107, 13, 17, DRBl*1401-48, DRB3*0215, DRB1*1001, 
DRB4*0101-06, DRBl*0301-25 in DR4, DRB*0402, 15, 25, 36, 47, DRBl*1101-47, 
DRBl*1201-09DRBl*1301-62, DRB1*1403, 16, 17, 21, 22, 24, 25, 27, 29, 30, 37, 
40, 41, 48, DRBl*0801-25, DRB5*0101-12, DRB5*0202-05 in DR5, DRB1*0901-
02, DRBl*0701-07 in DR9. The DQ alleles are divided into DQl (DQB1*0501-
03, DQB1*0601-21), DQ2 (DQB10201-03) and DQ3 (DQB1*0301-13, DQB1*0401, 
DQB1*0402 and DQAl*0301-03) (table 10.4). Four families are discovered for HLA-
DP alleles, they are DPwl, DPw2 (DPB1*0201, DPB1*0202, DPB1*32, 33, 41, 46, 
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47, 48, 71, 81, 86, 95), DPw4 (DPB1*0401 and 0402, DPB1*15, 18, 23, 24, 28, 34, 
39, 40, 49, 51, 53, 59, 60, 62, 66, 72, 73, 74, 75, 77, 80, 83, 94, 96, 99) and DPw6 
(Table 10.4). In hierarchical clustering, DPwl cluster includes DPB1*0101, 0301 
and 0501, DPB1*14, 20, 25, 26, 27, 31, 35, 36, 38, 45, 50, 52, 56, 57, 63, 65, 67, 68, 
70, 76, 78, 79, 84, 85, 87, 89, 90, 91, 92, 97 and 98. DPw6 cluster has DPB1*0601, 
and DPB1*08, 09, 10, 11, 13, 16, 17, 19, 21, 22, 29, 30, 37, 44, 54, 55, 58, 69, 88, 
93. Nonhierarchical clustering classifies DPB1*0101, DPB1*0301, DPB1*11, 14, 25, 
26, 31, 35, 45, 50, 52, 56, 57, 65, 67, 68, 69, 70, 76, 78, 79, 84, 90 and 92 into DPwl 
and DPB1*0501, 0601, DPB1*08, 09, 10, 13, 16, 17, 19, 20, 21, 22, 27, 29, 30, 36, 
37, 38, 44, 54, 55, 58, 63, 85, 87, 88, 89, 91, 93, 97 and 98. 

HLA-DR classification is due to polymorphism at position 9, 70 and 74 of the beta 
chain. Alleles with Trp9 are found in DRl and those with Lys/Gln9 are in DR9. 
Alleles with Glu9/Asp70 are grouped in DR5. Alleles that have the combination 
of Glu9/Gln70 and Gln/Arg74 are in DR3 and those with Glu9, Gln/Arg70 and 
Glu/Ala74 are in DR4. Only two positions are responsible for HLA-DQ classifica
tion, position 71 and 86 of the beta chain. All alleles with Val86 are grouped in 
DQl cluster, while those with Glu86/Lys71 are in DQ2 and those with Glu86 and 
Thr/Asp71 are in DQ3. The DP classification is mainly based on polymorphism at 
position 69 and 84 of the beta chain. Alleles with Asp84 are grouped into DPwl /2 
and those with Gly/Val84 are in DPw4/6. Alleles in DPwl /2 are separated by amino 
acid differences at position 69, those with Lys69 are grouped into DPwl and those 
with Glu69 are in DPw2. DPw4 and DPw6 are separated by Lys69 and Glu69, re
spectively. The classification by hierarchical and non hierarchical clustering have a 
consensus of more than 85%. 

A possible limitation of the GRID/CPCA technique is that it relies on accurate 
molecular structures. As the number of unique HLA sequences greatly exceeds the 
number of unique solved MHC crystal structures, protein structures used in these 
studies have been derived by homology modelling. Although HLA molecules are 
structurally similar, there may be some differences in the binding site conforma
tion, and potentially this limitation is confounding. However, compared with HLA 
classifications based on peptide binding motifs, chemometric methods have some 
advantages (table 10.4). GRID/CPCA and hierarchical clustering are more fiexible 
as they only require the sequence information of molecules, therefore all the HLA 
molecules available, whether or not they have been studied experimentally, can be 
classified. In contrast, the motif-based method can only classify that small number of 
HLA molecules with sufficient binding data. Most of the motifs include only anchor 
residues of the peptide, therefore only part of the peptide binding site interaction 
is studied. GRID/CPCA method takes the whole binding site into consideration 
and identifies important positions involved in the classification. Also, motif based 
classifications use a haphazard mismash of differently derived experimental binding 
data, which may be biased and inconsistent. GRID/CPCA classification only uses 
sequence information, albeit manifest as homology modelled 3D structures, and thus 
minimises data inconsistency. 
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10.4 Discussion 

As we have seen, HLA alleles can be classified into supertypes using only their 
sequence information. Some have sought insights into MHC supertypes from a se
quence perspective, others from the perspective of structural data. The classification 
we outlined here identifies crucial, cluster determining differences at several impor
tant positions in the binding site. These positions are the HLA 'fingerprints'. The 
HLA-A fingerprint includes position Phe/Tyr9, Arg97, Hisll4 for A2 supertype, 
Ser9 and Arg97 for A24 and Ser/Thr9, Ile/Arg97, Glul l4 and Aspll6 for A3 su
pertype. The HLA-B fingerprint is Asn63 and Leu81 for B7, Glu63 and Leu81 for 
B27 and AlaSl for B44. The HLA-C fingerprint is Ser/Gly77 for CI and Asn77 for 
C4 supertype. The important positions for Class H DR supertype classification are 
position 9, 70 and 74, and position 71 and 86 are identified as the fingerprint for 
DQ clusters. These HLA fingerprints enable us to group any new HLA molecules 
into supertypes, accelerating HLA function characterisation and help to define the 
peptide binding motif for the molecule. Also, the HLA supertype classification al
lows immunologists to use similarities in sequence and structure to make educated 
guesses about peptide binding specificity that will help in identifying good MHC 
binders and testable potential epitopes. 

The veracity and pace of vaccine identification would be enhanced greatly were one 
able to group HLA alleles into effective supertypes. An accurate and sufficiently 
extensive classification would render experimental work much more efficient, since 
one could look at a few supertypes rather than at thousands of separate alleles. 
This would thus greatly expedite the discovery of epitope based vaccines targeted at 
multiple alleles. Supertype definitions have already shown utility in epitope based 
vaccine discovery. Epitopes taken from hepatitis B virus infected patients have been 
shown to cross react with alleles in the A2, A3 and B7 superfamilies [Bertoni & 
Sidney 1997]. Epitopes isolated from Epstein-Barr virus reacted with several alleles 
of the B*44 family [Khanna & Burrows 1997]. Epitopes have been shown to cross-
react with the A24 family [Burrows Sz Elkington 2003]. Many viral and tumour 
antigen derived vaccine candidates have also been shown to be able to bind multiple 
alleles. Sette et al. predicted 223 potential cancer peptides of CEA, Her-2/neu, P53 
and MAGE antigens using a T cell epitope prediction algorithm, among which 115 
were cross-reactive with peptides of the A2 supertype. 43 peptides were tested for 
immunogenecity and 73% were positive [Sette & Livingston 2001]. Recently a protein 
sequence scan has been carried out to search for T cell epitopes within the sequence 
of the SARS virus, based on the nine HLA supertypes in Sette's analysis [Sylvester-
Hvid et al. 2004]. Fifteen predicted epitopes for each supertype were identified and 
tested experimentally: 75% of the predicted epitopes were found to be high affinity 
peptides (IC50 < 500nM) and about 112 candidate epitopes were obtained. 

All supertypes are theoretically derived, even the experimental supertypes promul
gated by Sette. His supertypes were derived from the comparison of binding motifs. 
Motifs are, at best, an inadequate description of peptide specificity. Possessing a cer
tain verisimilitude, they can only give rise to a partial and largely incomplete defini
tion of supertypes, limited by the lack of data for most MHC molecules. Structural 
supertypes represent an encouraging solution to this problem, unencumbered by lim-
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itations imposed by the availability of binding data. Modern methods in particular, 
such as the GRID/CPCA method we outline here, allow us to propose supertype 
definitions solely based on sequence and structural data. In one seamless movement 
we can preogress from HLA sequencing to structure to supertype classification to 
binding specificity to epitope prediction. The clinical potential of such a process are 
tantalizing. Moreover, the same fundamental methodology can be used to address 
the issue of identifying benign HLA mismatches in tissue rejection, such as kidney 
transplants, bone marrow donation, and the like. Such problems require a robust, 
reliable and, preferably, transparent measure of structural similarity between HLA 
molecules in order to suggest which pairs of alleles will present the same peptides 
or be equally invisible to antibody surveillance. The GRID/CPCA method offers 
the possibility of effectively addressing all these problems and many more. All that 
is required is the requisite investment of time and resource in order to realize this 
potential coupled, of course, to the willingness of experimentalists to exploit these 
techniques. 
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Clusters 

|1 

2 

3 

Alleles 

HLA-A3, HLA-All, HLA-31, and HLA-33 

HLA-B7, HLA-B35, HLA-B51, HLA-B53 and HLA-B54 

HLA-A29, HLA-B44 and HLA-B61 

Table 10.1. Three clusters are identified by Cano's geometrical similarity matrix 
analysis 

Supertype 

A2 

A3 

B7 

B44 

Alleles 1 
A*0201-06, A*6802, A*6901 

A*0301, A*1101, A*3101, A*3301, A*6801 

B*0702-5, B*3501-3, B*5101-5, B*5301 

B*5401, B*5501-2, B*5601, B*6701and B*7801 

B37, B41, B44, B45, B47, B49, B50, B60, B61 | 

Table 10.2. The four supertypes defined by Sette's group. 

Supertype 
Al 

A2 

A24 

A3 

B44 

B27 

B7 

B58 

B62 

MHC alleles 

0101, 2501, 2601, 02, 2902, 3001, 3201 

0201-07, 6802, 6901 

2301, 2402-04, 3001-03 

0301, 1101, 3101, 3301, 6801 

37, 4001,4002 4006, 41, 44, 45, 47, 49, 50 

1401 - 02, 1503, 09, 10, 18, 2701 - 08, 3801, 02, 3901 -- 04, 4801, 02, 7301 

07, 35, 51, 53, 54, 55, 56, 67, 78 

1516, 17, 5701, 02, 58 

1301 - 02, 1501, 02, 06, 12, 13, 14, 19, 21, 4601, 52 

Table 10.3. Nine supertypes defined by Sette and Sidney 
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Supertype 

Al 

A2 

A24 

A3 

Motif-based 

0101 

2501 

2601,02 

3201 

0201-07 

6802 

6901 

2310 

2402-04 

3001-03 

0301 

1101 

3101 

3301 

6801 

Hierarchical clus
tering 

0201 - 60 

2501 - 04 

2601 - 18 

3401, 05 

4301 

6601 - 04 

6802, 15, 23 

6901 

2301-09 

2402 - 38 

0101 - 09 

0301 - 10 

1101 - 14 

2901 - 07 

3001 - 12 

3101 - 09 

3201 - 07 

3402 - 04 

3601 - 04 

6801 - 22 without 

02, 15 

15 

7401 - 09 

8001 

Consensus 
PCA 

0201 - 60 
without 04, 
17,57 

6802, 15, 23 

6901 

231-09 

2402 - 38 

0101 - 09 

0301 - 10 

1101 - 14 

2501 - 04 

2601 - 18 

2901 - 07 

3101 - 09 

3201 - 07 

3301 - 06 

3401 - 05 

3601 - 04 

4301 

6601 - 04 

6801 - 23 
without 02, 
15 

7401 - 09 

8001 

Fingerprint 

Tyr9/Phe9 

Arg97 

Hisll4 and Tyrll6 

Ser9 

Met97 

Tyr9/Phe9/Ser9 

Ile97/Met97 

Glull4 and Aspll6j 

Table 10.4. A list of HLA alleles included in each cluster in the scores plot. For 
simplicity only the beginning and the end of the alleles were listed. For example, 
A*0201 - 60 meant that all sixty alleles from A*0201, A*0202, A*0203 . . . to A*0260 
were included in the cluster, etc. The amino acids used to define each cluster are 
shown in the last column. 



10 Identifying Major Histocompatibility Complex Supertypes 213 

Supertype 

S44 

^ 2 7 

Motif-based 

37 

40012 

4006 

41 

44 

45 

47 

49 

50 

1401 - 02 

1503, 09, 10, 
18 

2701 - 08 

3801. 02 

3901 - 04 

4801, 02 

7301 

Hierarchical clustering 

0802 

1301 - 1311 without 09 

1513, 16, 17, 23, 24, 36, 67 

1809 

2701, 02 

3801 - 3809 without 03 

4013, 4019 

4402 - 4433 without 09, 31 

4704 

4901 - 03 

5101 - 34 

5201 - 05 

5301 - 09 without 03, 05 

5701 - 09 

5801 - 07 

5901 

0713 

1309 

1501 - 1575 without these 
in B7 

and B44 

1812 

2703 - 2725 

3513, 16, 28 

3701 - 05 

3803 

3902, 08, 13, 22, 23 

4001 - 44 without 08, 13, 

19,25 

4101 - 06 

4409, 31 

4501 - 06 

4601, 02 

4701 - 03 

4801 - 07 

5001 - 04 

5608 

6702 

7805 

Consensus PCA 

0802 

1301-1311 without 
09 

1513, 16, 17, 23, 24, 
36,67 

1809 

3805 

5101 - 34 

5201 - 05 

5301 - 09 

5607 

5701 - 09 

5 8 - 0 7 

0727 

2701 - 25 without 
08, 12, 18 

3701 - 04 

3801 - 09 

4013, 19, 28 

Fingerprint 

Ala81 

Glu63 

Leu81 

Table 10.5. A list of the HLA-B molecules in the scores plot (Part 1) 
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Supertype 

B7 

B58 

B62 

Mot if-based 

07 

35 

51 

53 

54 

55 

56 

67 

78 

1516, 17 

5701, 02 

58 

1301 - 02 

1501, 02, 06, 

12, 

13, 14, 19, 
21 

4601 

52 

Hierarchical clustering 

0702 - 31 without 13 

0801 - 17 without 02 

1401 - 06 

1502, 08, 09, 10, 11, 15, 18, 
21, 29, 37, 

44, 51, 52, 55, 64, 72 

1801 - 18 without 09, 12 

2723 

3501 - 45 without 13, 16, 28 

3901 - 27 without 02, 08, 

13, 22, 

23 

4008, 25 

4201 - 04 

4806 

5303, 05 

5401, 02 

5501 - 12 

5601-11 without 08 

6701 

7301 

7801- 04 

8101 

8201, 02 

8101 

Consensus PCA 

0702 - 31 without 
0727 

0801 - 17 without 
02 

1309 

1401 - 06 

1501 - 75 without 
13, 16, 17 

23, 24, 36, 67 

1801 - 18 without 
09 

2708, 12, 18 

3501 - 45 

3705 

3904 

4101 - 06 

4201 - 04 

4409 

4501 - 06 

4601, 02 

4702 

4801 - 07 

5001 - 04 

5401, 02 

5501 - 10 

5601 - 11 without 

5607 

6701, 02 

7301 

7801 - 05 

8101 

8201, 02 

8301 

Fingerprint 

Asn63 

Leu81 

Tab le 10.6. A list of the HLA-B molecules in the scores plot (Part 2). 
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Supertype 

CI 

C2 

Motif-based 

No data 

No data 

Hierarchical clus
tering 

0102 - 09 

0302 - 16 without 

07, 08, 10, 15 

0702 - 18 without 

01,06,07,09,16,18 

0801 - 09 

1202 - 07 without 

04, 05, 08 

1402 - 05 

1601, 04 

0202 - 06 

0307, 08, 10, 15 

0401 - 10 

0501 - 06 

0602 - 09 

0701, 06, 07, 09, 16, 

18 

1204, 05, 08 

1502 - 11 

1602 

1701 - 03 
1801, 02 

Consensus 
PCA 

0102 - 09 
0302 - 16 
without 7, 
15 
0701 - 18 
without 07, 
09 
0801 - 09 
1202 - 08 
without 04, 
05 
1402 - 05 
1601, 04 

0202 - 06 

0307, 15 

0401 - 10 

0501 - 06 

0602 - 09 

0707, 09 

1204, 05 

1404 

1502 - 11 

1602 

1701 - 03 

1801, 02 

Fingerprint 

Ser77/Gly77 

Asn77 

Table 10.7. A list of the HLA-C molecules in each cluster. The important residues 
in defining the clusters were fisted in the last column. 
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Cluster 

Al 

A2 

A3 

Alleles 

0101-09 
0208 0216 0220 0229 0256 
0301-10 
1101-09 1112-14 
2309 
3001-12 3101 3103-06 3019 
3201-04 3206-07 3601-04 
6002-03 6810 6813-14 7401-09 
8001 

0255 
1110-11 2424 2501-04 2601-08 
3301 3303-06 3402-04 
4301 
6601 6604 6801-09 6815-23 
6901 

0201-07 0209-19 0221-28 0230-54 0257-60 
2301-06 2402-38 2607 2901-07 
3007 3102 3107-08 3205 3401 3405 7409 

Fingerprint 

Asn66 Glu63 

Asn66 Asn63 

Lys66 

Table 10.8. Supertypes defined by pocket analysis: pocket a 

Supertype 

Bl 

B2 

alleles 

0101-08 
0201-33 0236-60 2301-06 2401-23 2425-38 
2501-04 2601-08 
3002-10 3012 3101-09 3201-07 
3301-06 
4301 6803-05 
7401-09 8001 

0234-35 
2424 2901-07 3001 3011 
3401-05 0301-10 1101-14 6601-02 6604 6801-23 
6901 

Fingerprint 

His70 

Gln70 

Table 10.9. Supertypes defined by pocket analysis: pocket b 
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Supertype 

CI 

C2 

Alleles 

0101-09 
0211 0235 0248 
0301-10 
1101-05 1107-14 
2301-09 
2402-27 2429 2431-38 
2501-04 2601-18 
2901-07 3001-12 3101-09 
3201-07 3401-05 
3601-04 4301 6601-04 
6801-04 6806-14 6816-19 6821-23 6901 7401-05 
7408-09 

0201-10 0212-34 0236-47 0249-60 1106 2428 2430 
2603 2606 3009 
6805 6815 6820 
7406 8001 

Fingerprint 

Asp74 

His74 

Table 10.10. Supertypes defined by pocket analysis: pocket c 
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Supertype 

Dl 

D2 

p3 

D4 

D5 

Alleles 

0101-03 0107-08 0249 1108 3601-04 

0310 1101-07 1109-14 
2417 2905 3402 6801 6803-05 6807-23 

0106 0201-40 0242-48 0250-51 0253-60 
0301 0304-09 
2301-09 2402-16 2418-38 
2901-07 
3103-06 3204 3402-04 
6802 6808 6815 6901 8001 

2501-04 2601-18 3004 3006 3202 3401 3405 4301 
6601-04 

0241 0252 
3001-03 3007-12 3101-02 3105 3107-09 
3201-03 3205 3207 
3301-06 7401-09 

Fingerprint 

Arg/Hisll4 
Argl56 

Argl l4 
Gln/Trpl56 

Argl l4 
Leul56 

Phe/Glnl l4 
Gln/Trpl56 

Phe/Glnl l4 
Leu156 

Table 10.11. Supertypes defined by pocket analysis: pocket d 
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Supertype 

E l 

E2 

E3 

E4 

Alleles 

0101-09 
0302 0307 0310 
1101-02 1104-07 1109-14 
2612 2618 
2901-04 2906-07 
3101-09 3201-03 3205-07 
3301-06 3601-04 
6801 6803-05 6808-11 6813-14 6816 6818-23 
7401-09 8001 

0301 0304-06 0308-09 
1103 1108 
2504 2608 2905 
3204 3402-04 

0201-02 0204-12 0214-25 0227-37 0239-60 
2301-09 2402-17 2419-38 
3001-12 
6802 6806 6807 6815 6817 
6901 

0203 0213 0226 0238 
2418 2501-03 2601-11 2613-17 
3401 3405 4301 6601-04 

Fingerprint 

Aspll6 
Val/Alal52 

Aspll6 
Glul52 

Tyr/Hisl l6 
Vall52 

Tyr/Hisl l6 
Glul52 

Table 10.12. Supertypes defined by pocket analysis: pocket e 
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Supertype 

Fl 

F2 

Alleles 

0101-09 0301-10 
1101-14 2417 2501-04 
2601-09 2901-07 
3101-09 3202-07 3301-06 
3401-05 3601-04 
4301 6601-04 6801 6803 6808-14 6816 6818-23 
7401-09 8001 

0201-60 2301-06 2309 2402-38 2602 3001-12 
6802 6806-07 6815 6817 
6901 

Fingerprint 

Aspll6 

Tyrll6 

Table 10.13. Supertypes defined by pocket analysis: pocket f 
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Supertype 

pm 

pR3 

pR4 

Hierarchical 
clustering 

DRl 
(DRB1*0101-

11) 
DR2 
(DRB1*1501-

11, 
DRB1*1601-
08) 
DR7 
(DRB1*0701-
07) 

DR3 
(DRB1*0301-
25) 
DR52 
(DRB3*0101-
10, 
DRB3*0201-
18, 
DRB3*0301-
03) 
DRB1*0422 
DRB1*1107 

DR4 
(DRB1*0401, 
03-48 without 
the alleles 
from DR5 
supertype) 
DR5 
(DRB1*1113, 
17, 26, 34, 42) 
DR6 
(DRB1*1309, 
DRB1*1401-
48 without 
the alleles 
from DR5 
supertype) 

DRIO 
(DRB1*1001) 
DR53 
(DRB4*0101-
06) 

Non-
hierarchical 
clustering 

DRl 
(DRB1*0101-

11) 
DR2 
(DRB1*1501-

11, 
DRB1*1601-
08) 

-

-
DR52 
(DRB3*0101-
10, 
DRB3*0201-
18, 
DRB3*0301-
03) 
DRB1*1333 
DRB1*1447 

DR4 
(DRB1*0401, 
03-48 without 
the alleles 
from DR5 
supertype) 
DR5 
(DRB1*1107, 
13, 17) 
DR6 
(DRB1*1401-
48 without 
the alleles 
from DR5 
supertype) 
DRB3*0215 
DRIO 
(DRB1*1001) 
DR53 
(DRB4*0101-
06) 
DR3 
(DRB1*0301-
25) 

Common 
alleles 

n 
13 
7 
-

-
10 
18 
3 
-
-

38 
2 
31 
-
1 
5 

-

Fingerprint 

T ^ 

~GhF^ 
Gln^«^ 
Gln/Arg^^^ 

Gh?̂ ^ 
Gln/Arg^°^ 
Q\U/AW 

Known su-
pertypes"" 

DR RSP 
"R" 

DR RSP 
"A" 

Known motifs 
pi p 4 p6 p7 
p9 

DRB1*0101 
(9, 50-52) 
YFW LA AG -
LA 
DRB1*1501 
(53, 54) 
LVI FYI - IL 
GSP 

DRB1*0301 
(55-57) 
LIF D KR -
YLF 
MV 

DRB1*0401 
(58-60) 
FY no RK NS 
pol^ pol W 
chg^ ali^ 
aHK 
DRB 1*0404 

(61) 
V I L n o R K N T 
pol pol 
chg ali 
ali K 
DRB1*0405 
(61-63) 
FY VIL NS pol 
DE 
chg 
ali 

T a b l e 10.14. DR supertypes and fingerprints. Results of The content of hierarchical 
and non-hierarchical clustering are compared and fingerprints are defined (Part 1). 
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Supertype 

DR5 

DR9 

Sum 

Hierarchical 
clustering 

DR4 
(DRB1*0402, 
12, 15, 25, 36, 
37, 47) 
DR5 
(DRB1*1101-
47, 
DRB1*1201-
09) 
DR6 
(DRB1*1301-
62, 
DRB1*1403, 
16, 22, 25, 27, 
40) 
DR8 
(DRB1*0801-
25) 

-

DR9 
(DRB1*0901, 
02) 
DR51 
(DRB5*0101 

12, 
DRB5*0202 -
05) 

347 

Non-
hierarchical 
clustering 

DR4 
(DRB1*0402, 
15, 25, 36, 47) 
DR5 
(DRB1*1101-
47, 
DRB1*1201-
09) 
DR6 
(DRB1*1301-
62, 
DRB1*1403, 
16, 17, 21, 22, 
24, 25, 27, 29, 
30, 37, 40, 41, 
48) 
DR8 
(DRB1*0801-
25) 
DR51 
(DRB5*0101 

12, 
DRB5*0202 -
05) 

DR9 
(DRB1*0901, 
02) 

-
-
DR7 
(DRB1*0701-
07) 

347 

Common 
alleles 

5 
42 
9 
61 
6 
25 

-
-

2 
-
-
-

285 
(82%) 

Fingerprint 

Gh^ 
Asp^°^ 

Lys/Gln^^ 

Known su-
pertypes"' 

DR RSP 
"D" 

Known motifs 

pi p 4 P^ P"^ 
p9 

DRB1*0402 
(61) 
VIL no DE NQ 
R K p o l 
ali 
H 
DRB1*1101 
(59, 64) 
WYF LVI RK 
- -
DRB1*1201 
(51) 
XL LMN VYF 
- Y F M 

DRB5*0101 
(53, 54) 
F Y Q V - - R K 

Table 10.15. DR supertypes and fingerprints. Results of The content of hierarchical 
and non-hierarchical clustering are compared and fingerprints are defined (Part 2). 
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Supertype 

pQl 

pQ2 

pQ3 

pQAl*03^ 
Sum 

Hierarchical clus
tering 

DQBl*0501-03 
DQB1*0601-21 

DQBl*0201-03 

DQB1*0301-13 
DQB1*0401, 02 

DQAl*0301-03 

738 

Non-hierarchical 
clustering 

DQBl*0501-03 
DQB1*0601-21 

DQBl*0201-03 

DQB1*0301-13 
DQB1*0401, 02 

-

738 

Common al
leles 

45 
300 

45 

195 
30 

-

615 (83%) 

Fingerprint 

Val^^" 

L y s " " 

Thr/Asp' '!" 

Argssc 

Table 10.16. HLA-DQ supertypes and fingerprints. Results of The content of hier
archical and non-hierarchical clustering are compared and fingerprints are defined. 
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Supertype 

p P w l 

p P w 2 

p P w 4 

p P w 6 

Sum 

Hierarchical clus
tering 

DPwl 
(DPB1*0101) 
DPw3 
(DPB1*0301) 
DPw5 
(DPB1*0501) 
DPB1*14, 20, 25, 
26, 27, 31, 35, 36, 
38, 45, 50, 52, 56, 
57, 63, 65, 67, 68, 
70, 76, 78, 79, 84, 
85, 87, 89, 90, 91, 
92, 97, 98 

DPw2 (DPB1*0201 
and 0202) 
DBP1*32, 33, 41, 
46, 47, 48, 71, 81, 
86, 95 

DPw4 (DPB1*0401 
and 0402) 
DPB1*15, 18, 23, 
24, 28, 34, 39, 40, 
49, 51, 53, 59, 60, 
62, 66, 72, 73, 74, 
75, 77, 80, 83, 94, 
96, 99 

DPw6 
(DPB1*0601) 
DPB1*08, 09, 10, 
11, 13, 16, 17, 19, 
21, 22, 29, 30, 37, 
44, 54, 55, 58, 69, 
88, 93 

1140 

Non-hierarchical 
clustering 

DPwl 
(DPB1*0101) 
DPw3 
(DPB1*0301) 

DPB1*11, 14, 25, 
26, 31, 35, 45, 50, 
52, 56, 57, 65, 67, 
68, 69, 70, 76, 78, 
79, 84, 90, 92 

DPw2 (DPB1*0201 
and 0202) 
DBP1*32, 33, 41, 
46, 47, 48, 71, 81, 
86, 95 

DPw4 (DPB1*0401 
and 0402) 
DPB1*15, 18, 23, 
24, 28, 34, 39, 40, 
49, 51, 53, 59, 60, 
62, 66, 72, 73, 74, 
75, 77, 80, 82, 83, 
94, 96, 99 

DPw5 
(DPB1*0501) 
DPw6 
(DPB1*0601) 
DPB1*08, 09, 10, 
13, 16, 17, 19, 20, 
21, 22, 27, 29, 30, 
36, 37, 38, 44, 54, 
55, 58, 63, 85, 87, 
88,89,91,93,97,98 

1140 

Common al
leles 

12 
12 
240 

24 
120 

24 
312 

12 
216 

972 (85%) 

Fingerprint 

Gly/Val*'"' 

Gly/Val**" 
Lys^^" 

Table 10.17. HLA-DP supertypes and fingerprints. Results of The content of hier
archical and non-hierarchical clustering are compared and fingerprints are defined. 
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Motif based 

Considers part of the binding site 

Requires the binding motif of the alleles 

Can only classify alleles with known motifs 

GRID/CPCA approach 

Considers the whole binding site 

Sequence information only 

Able to classify all HLA alleles 

Table 10.18. The advantages of chemometric methods over motif based classifica
tion. 



226 Pingping Guan, Irini A. Doytchinova, and Darren R. Flower 

Fig. 10.1 . The 3D scores plot of the CPCA analysis for HLA-A molecules. The A24 
cluster is on the top left of the plot, the A3 cluster is on the top right of the plot 
and the A2 cluster is below the X axis. 
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A3 A24 A2 
Fig. 10.2. The HLA-A classification defined by hierarchical clustering. A hierarchi
cal tree was built for the 229 HLA-A alleles. Each leaf represented one allele. The 
results of the clustering were similar to that of the GRID/CPCA analysis, the three 
clusters were defined in both experiments: A2, A3 and A24. 
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(a) 

Fig. 10.3. The loading plot of the HLA-A CPCA model. The binding site of 
A*0201 is used in the plot to display the positions of the amino acids. There were 
two important interactions in the plot. The hydrophobic interaction is favoured at 
position 9 (a), and disfavoured around position 97, 114 and 116 (b). 
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Fig. 10.4. The 3D scores plot of the CPCA analysis for HLA-B molecules. Three 
clusters were identified in the plot: B7, B27 and B44. 
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B44 B27 B7 
Fig. 10.5. HLA clusters produced using hierarchical clustering. A hierarchical tree 
was produced for the 447 HLA-B alleles. Each leaf represents one allele. 

Fig. 10.6. Loading plot of the CPCA model for the HLA-B superfamilies classi
fication. Part of the B*0801 binding site is shown in the plot. The hydrophobic 
interaction is found around position 63 and 66 (a), 77 and 81 (b) 
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Fig. 10.7. The 3D scores plot of the HLA-C CPCA analysis. Two clusters were 
displayed in the plot. The main cluster above the X axis had many CI molecules 
and was named the CI cluster. The cluster below the X axis had lots of C4 molecules 
and was named the C4 cluster. 
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Fig. 10.8. The hierarchical tree obtained from hierarchical clustering, in which the 
HLA-C molecules were classified into CI and C4 clusters. Each leaf represented one 
HLA-C allele. Results of the analysis were in accordance with the GRID/CPCA 
classification. 
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Fig. 10.9. The loading plot of the HLA-C CPCA model for the water probe. The 
binding site of Cw*0401 is shown in the plot. The highlighted area is around position 
70, 74 and 81. 
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Summary . Proteins are responsible for almost all functions in a living organism: 
such as enzymatic catalysis, storage and transport of material, RNA editing, organ 
development, antibodies and more. The Protein Structure Prediction problem (PSP) 
is concerned with the prediction of the 3D structure of a protein given its sequence of 
amino acids. If we know the protein structure we can infer the protein function. One 
computational approach for predicting the 3D structure of a protein is related to the 
minimisation of the energy function derived from physico-chemical and statistical 
considerations. The Chapter proposes the use of hybrid Immune Algorithms to face 
the PSP as a single objective optimisation problem, the classical approach, and 
as a multi-objective optimisation problem, the innovative approach. This Chapter 
presents a link between the world of Artificial Immune Systems and the application 
to real biological problems. 

11.1 Introduction 

Understanding the action of proteins is the key to understanding the spark of life 
itself. The information contained in the primary sequence is known to be sufficient 
to completely determine the geometrical three-dimensional structure of the protein, 
at least for simpler proteins that are observed to reliably refold when denatured in 
vitro. 

This chapter proposes the use of immunological inspired algorithms (as discussed in 
Chapter 3 in this book, based on the clonal selection principle, to the application to 
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biological problems, a sort of biological recursive process, if you will. In particular, 
the biomolecules structure prediction problem is faced both as a single objective 
optimisation problem, the classical approach, and as a multi-objective optimisation 
problem, the innovative approach. These two distinct optimisation problems have 
been tackled by designing algorithms inspired by the inner workings of the biological 
immune system. Both approaches are very effective and efficient both in terms of 
quality solution and computational cost. 

This Chapter presents a link between the world of Artificial Immune Systems and 
the application to real biological problems. 

11.2 Biomolecular Structure Prediction 

The explosion of research in molecular biology has been made possible by the funda
mental discovery that hereditary information is stored and passed on in the simple, 
one-dimensional (ID) sequence of DNA base pairs [Watson Sz Crick 1953]. The con
nection between heredity and biological function is made through the transmission 
of this ID information, through RNA, to the protein sequence of amino acid. The 
information contained in this sequence is known to be sufficient to completely de
termine the geometrical three-dimensional (3D) structure of the protein, at least for 
simpler proteins which are observed to reliably refold when denatured in vitro, i.e., 
without the aid of any cellular machinery such as chaperones or steric constrains 
due to the presence of a ribosomal surface [Anfinsen 1973]. 

Folding to a specific structure is typically a prerequisite for a protein to function. 
Further understanding of the molecular description of life requires answering the 
deceptively simple question of how the ID sequence of amino acids in a protein 
chain determines its 3D folded conformation in space, or more precisely, the set of 
near native conformations. 

There are many large biological molecules, including: nucleic acids, carbohydrates, 
lipids and proteins. While each play a vital and interesting part in life, there is 
something special about proteins. Indeed, of all the components that make up life, 
almost all but proteins are relatively inert and are generally, the substrates that 
are chopped changed by the action of proteins. In doing this, proteins do not act 
using some abstract bulk property, unlike lipids and carbohydrates, proteins act 
like individual agents that latch onto their 'objectives', the substrates, and cut and 
change them. Indeed, when located across a lipid membrane, they are also quite 
good at opening and shutting 'trapdoors'. 
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Chemical structure of protein 

Protein is a polymer consisting of a long chain of amino acids. There are 20 different 
amino acids, the simple building blocks of proteins (see table 11.2; the amino acid 
residues are usually abbreviated with three identifying letters, or one-letter code, of 
the corresponding amino acid). 

Amino acid 

Alanine 

Serine 

Threonine 

Cysteine 

Valine 

Isoleucine 

Leucine 

Proline 

Phenylalanine 

Tyrosine 

Methionine 

Tryptophan 

Asparagine 
Glutamine 

Histidine 

Aspartic acid 

Glutamic acid 

Lysine 

Arginine 

Glycine 

3-letter 1-letter 

Ala 

Ser 

Thr 

Cys 

Val 

He 

Leu 

Pro 

Phe 

Tyr 

Met 

Trp 

Asn 
Gin 

His 

Asp 

Glu 

Lys 

Arg 

Gly 

A 

S 

T 

C 

V 

I 

L 

P 

F 

Y 

M 

W 

N 

Q 
H 

D 

E 

K 

R 

G 

relevant property 

[Fauchere & Pliska 1983] 

acidic 

acidic 

basic 

basic 

small 

small 

small 

hydrophobic 

hydrophobic 

hydrophobic 

hydrophobic 

hydrophobic 

hydrophobic 

hydrophobic 

hydrophobic 

hydrophobic 

polar 
polar 

polar 

, negatively charged 

, negatively charged 

, positively charged 

, positively charged 

hydrophobicity 

031 

-0.04 

0.26 

1.54 

1.22 

1.80 

1.70 

0.72 

1.79 

0.26 

1.23 

2.25 

-0.60 
-0.64 

0.13 

-0 .77 

-0.64 

-0.99 

-1 .01 

0.0 

Table 11.1. The amino acids 

Under the influence of RNA containing the genetic information coding for the amino 
acid sequence, amino acids polymerise in a specific sequence to a chain forming the 
primary structure of the protein. 

Each amino acid consists of a central carbon atom, the alpha carbon (Ca), bounded 
to an amino group {NH2), a carboxyl group (COOH) and a side chain. Each amino 
acid has a different side chain which is uniquely responsible for the characteristics 
of the amino acids like shape, size, and polarity. The side chains have 1 — 18 atoms. 
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Amino acids are linked to each other by means of peptide bonds. They result in a 
constrained backbone of Ca, the repeating —NCaCf— is called the backbone of a 
protein. 

The interatomic forces bend and twist the chain in a way characteristic for each 
protein. These interatomic forces cause the protein to curl up into a specific 3D 
geometric configuration, the folded state of the protein. This configuration and the 
chemically active groups on the surface of the folded protein determine its biological 
function [Whisstock & Lesk 2003]. 

From I D to 3D information 

Although this problem is now considered central to molecular biology, only after 
about 45 years of study is it beginning to yield to the combined eflforts of molecular 
biologists, chemists, physicists, computer scientist and mathematicians [Tramontano 
2006]. 

The difficulty of the problem lies in the unfamiliar nature of ID to 3D information 
transcription in going from protein sequence to protein structure: the information 
processing cannot go in a sequential symbol by symbol fashion, but must operate 
simultaneously using remote parts of the sequence, and hence is essentially a non
local, collective process rather than the trivial translation of a message. 

Initial progress was primarily descriptive. Proteins were observed to be covalently 
bonded, linear polymers with a specific primary sequence of side-chains or amino 
acids attached at regular intervals, constituting the ID information pattern. While 
a given sequence uniquely determines a folded structure, a given structure may be 
highly degenerate in the sequences that fold to it, or can be 'designed' for it. Finding 
these sequences is known as the inverse protein folding or design problem [Bowie et 
al. 1991]. It is not uncommon for sequences with less than 50% identity of amino 
acids to fold to the same or similar structure, with nearly the same folding rate at 
a given stability. 

Allowed regions 

A pioneer analysis showed that the space of sterically allowed, local rotational angles 
of the backbone chain was quite restricted [Ramachandran & Sassiekharan 1968]. 
One of the allowed regions corresponded to the a-helix, another to a pleated 2D 
structure of parallel or anti-parallel strands (/?—sheets). These structures can persist 
indefinitely in effectively infinite protein structures such as wool (the a—helix) or silk 
(the /?—sheet), but in globular proteins they are broken up by turns of dense, semi
rigid random coil. The secondary structural elements of a protein are determined 
through the collective interactions of the elements with the rest of the molecule: the 
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identity of an amino acid does not, by itself exclusively determine what secondary 
structure it will be found in. 

Collective versus Local interactions 

The formation of the folded structure is governed by the collective effects of non-
covalent interactions in essentially the whole molecule: a theory that is local cannot 
solve the protein folding problem [Ngo et al. 1994]. This is fundamentally different 
from the self-organization occurring in biological systems without fixed disorder. 
For example, the hierarchical helix-formation involved in DNA folding, where the 
disorder in the sequence is suppressed by complementary base pairs, and the folding 
(supercoiling) mechanism is local. Collective interactions slow folding, whilst at the 
same time enhancing stability by involving non-local parts of the chain in the folding 
nucleus. 

Cooperative interactions 

The interactions stabilizing the native structure tend to also be cooperative: the 
energetic gains in forming native structure are achieved only when several parts 
of the protein are in spatial proximity and interacting [Perutz 1970]. There is a 
larger entropic barrier for this kind of process than for one involving simple pair 
interactions. In forming a protein which is compact overall, the elements of secondary 
structure must themselves be packed together into what is called tertiary structure. 
/3—sheets can only be oriented in certain ways when stacked on top of each other. 

Levinthal's paradox 

The observation mentioned earlier, that proteins can fold reversibly in vitro without 
any external cellular machinery, means that the folding mechanism can be theoret
ically and experimentally studied for a single isolated protein molecule interacting 
with solvent The reversible in vitro folding of a single protein means that the protein 
in the native state is thermodynamically stable, and therefore that the native state 
has the global minimum free energy of all kinetically accessible structures [Levinthal 
1969]. 
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11.2.1 Intractability of Protein Structure Prediction 

Energy Landscapes 

The folded state is a small ensemble of confoimational structures compared to the 
conformational entropy present in the unfolded ensemble. Considering a coarse
grained level of description, the folded structure must then have the lowest internal 
energy of all kinetically accessible conformational structures. Internal energy is de
fined here as the free energy of a single backbone conformation. We can define the 
energy landscape for this system as a mapping of the chain conformation to its in
ternal energy, along with rules defining what configurations are accessible from a 
given configuration and how the protein can move between them. 

Following to the principles of thermodynamics, if a system has n degrees of freedom 

the stable state of the system can be found by determining the set of values 

that gives the minimum value of the free energy function 

F((/>)-F(0i,(/>2,...,(/>n), 

when explored over all possible values of (f). Such functions F(</>) are called energy 
landscapes. For example, for the protein folding problem, </> could be the backbone 
and side-chain torsion angles. 

Hence, a energy landscape is a network of all conformational states of a protein, with 
an internal free energy associated with each conformation, and with the connectivity 
of the network specified or assumed implicitly. 

Impossibility and intractability 

Finding the native structure is analogous to a "drunken golfer finding the hole on 
a vast green", and it is useful to think of folding in this scenario as occurring on 
an energy landscape with a golf-green topography: the system obtains no energetic 
gain from ordering any residues until it stumbles upon the complete native structure, 
thus sampling is unbiased. Problems with energy landscape of this nature (the golf 
course), when viewed as optimisation problems to find the ground state, have been 
shown to be NP complete [Baum 1986], a computational problem which is both NP 
(verifiable in non-deterministic polynomial time) and NP-hard (any NP-problem can 
be translated into this problem). 

Hence, as one would suspect, finding a conformation that minimizes energy land
scapes is very hard. There are Protein Structure Prediction (PSP) non-discrete 
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models formally defined with NP hardness results, for example, the Ngo and Marks' 
PSP model [Ngo & Marks 1992]. In this non-discrete model, the protein is described 
by the complete list of the atoms in the molecule, their connectivity, bond lengths 
and angles and force constants between all pairs of atoms. The energy function is a 
non-convex function (obtained by summing the contributions of local and non-local 
interactions); to find a conformation that minimizes this kind of function is NP 
hard [Ngo Sz Marks 1992]. To show the hardness the authors devised a reduction 
from the Partition problem. No approximation algorithms are known for this PSP 
non-discrete model. 

11.3 PSP as a Single-Objective Optimisation Problem 

The most difficult task when using evolutionary algorithms, or any other type of 
stochastic search, for the PSP problem, is to come up with "good" representation 
of the conformations, and a objective function for evaluating conformations. 

Few conformation-representation are commonly used: all-atom 3D coordinates, all-
heavy-atom coordinates, backbone atom coordinates + side chain centroids, Ca 
coordinates, backbone and side chain torsion angles. Some algorithms use multiple 
representations and move between them for diff'erent purposes. 

In this Chapter, we use an internal coordinate representation, torsion angles, each 
residue type requires a fixed number of torsion angles to fix the 3D coordinates of 
all atoms. Bond lengths and angles are fixed at their ideal values. The degrees of 
freedom in this representation are the backbone and side chain torsion angles ((^, ?/;, 
a;, and Xh)- The number of x angles depends on the residue type. 

CHARMM potential energy function 

In order to evaluate the structure of a molecule we use energy functions. In partic
ular, we use classical physics to come up with energy functions. Sometimes called 
potential energy functions or force fields, these functions return a value for the en
ergy based on the conformation of the molecule. They provide information on what 
conformations of the molecule are better or worse. The lower the energy value, the 
better the conformation should be. 

In this Chapter, in order to evaluate the conformation of a protein, we use the 
CHARMM (version 27) energy function. CHARMM (Chemistry at HARvard Macro-
molecular Mechanics) [Brooks et al. 1983, MacKerell Jr. et al. 1998] is a popular 
all-atom force field used mainly for the study of macromolecules. It is a composite 
sum of several molecular mechanics equations: stretching, bending, torsion, Urey-
Bradley, impropers, van-der-Walls, electrostatics. The CHARMM energy function 
has the form: 
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where, in order, b is the bond length, 60 is the bond equiHbrium distance and kb 
is the bond force constant; S is the distance between two atoms separated by two 
covalent bonds (1,3 distance). So is the equiHbrium distance and kuB is the Urey 
Bradley force constant; 0 is the valence angle, ^0 is the equilibrium angle and Ke 
is the valence angle force constant; x is the torsion angle, k^ is the dihedral force 
constant, n is the multiplicity and S is the phase angle; 0 is the improper angle, (j)o 
is the equilibrium improper angle and kimp is the improper force constant; £ij is the 
Lennard Jones (LJ) well depth, rij is the distance between atoms i and j , Rmiriij is 
the minimum interaction radius, qi is the partial atomic charges and e is the dielectric 
constant. Typically, £i and Rmirii are obtained for individual atom types and then 
combined to yield Sij and Rmiriij for the interacting atoms via combining rules. In 
CHARMM, Sij values are obtained via the geometric mean sij = sqrt{ei * Sj), and 
Rmiriij via the arithmetic mean, Rmiriij = {Rmirii + Rminj)/2. 

Finally the energy function CHARMM (equation 11.1) represents our minimization 
objective, the torsion angles of the protein are the decision variables of the optimi
sation problem, and the constraint regions are the variable bounds. 

To evaluate the CHARMM energy function we use routines from TINKER Molec
ular Modeling Package [Huang et al. 1999]. First, the protein structure in internal 
coordinates (torsion angles) is transformed in cartesian coordinates using the PRO
TEIN routine. The conformation is then evaluated using the ANALYZE routine, 
that gives back the CHARMM energy potential of a given protein structure. 

T h e metr ics : D M E a n d R M S D 

To evaluate how similar the predicted conformation is to the native one, we employ 
two frequently used metrics: Root Mean Square Deviation (RMSD) and Distance 
Matrix Error (DME). RMSD is calculated by the formula: 
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J^'i^l 1̂ "̂  ~^^^ RMSD - J^=^i=kM^ L^IL (11.2) 

where Vai and ru are the positions of atom i of structure a and structure 6, respec
tively, and where structures a and h have been optimally superimposed. Fitting was 
performed using the McLachlan algorithm [McLachlan 1982] as implemented in the 
program ProFit [Profit Program]. 

DME is calculated by the formula: 

DME = -^ (11.3) 
n 

which does not require the superposition of coordinates. For a particular pair of 
structures, the RMSD, which measures the similarity of atomic positions, is usually 
larger than DME, which measures the similarity of inter-atomic distances. 

11.3.1 The Immune Algorithm for the P S P 

The scientific discipline of the Artificial Immune Systems (see Chapter 3 of this 
book) appears to be a powerful computing paradigm as well as a prominent appa
ratus for improving understanding of biological data and systems. In this Chapter 
we describe a class of Immune Algorithms based on clonal selection principle (see 
Chapter 3) using new immunological operators, aging operators, and particular mu
tation operators (the hypermutation and hypermacromutation operators) to face the 
Protein Structure Prediction problem for real proteins [Nicosia 2004]. 

The IA encodes each structure of a given protein as a set of torsion angles. In the 
real code representation, each B cell at time step t is a vector of real variables: 
X* = (xi ,a:2, . . . ,Xn) G 3^^ where —TT < Xi < TT ^i = 1,... ,n. 

Two new hypermutation and hypermacromutation operators were used together in 
the immune algorithm for the PSP. Usually, variation operators mutate a individ
ual by adding a Gaussian distributed random vector of mean zero and predefined 
deviation [Fogel 2000] to it as follows: x^*''̂  = x* + u where the mutation vector u 
is computed from u = {uiyU2,... ,Un), Uj = A/j(0,(7*) where cr* is the standard 
deviation over the entire population at generation t. 

The new hypermutation operator performs a local search of the conformational 
space. It will perturb all torsion angles [(j),ilj,uj,Xh) of a randomly chosen residue 
with the law: x^*''̂  = x* + iV(0,cr*), where x* is the i—th. torsion angle of a residue 
of B cell receptor x at time step t, and N(fd,a^) is a real number generated by a 
Gaussian distribution of mean // = 0 and standard deviation cr*. Starting at initial 
generation with cr*^^ = initialsigma, a user defined parameter (for all the simula
tions performed in this Section we set initialsigma = 5), the standard deviation at 
each generation t varies with the following law a^^^ = cr*—step (typically step = 0.5) 
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if the average fitness of the population at time step t decreases of one-order magni
tude. This is a simple strategy to allow for quick convergence and to explore more 
accurately the funnel landscape. In fact using a fixed a value requires more genera
tions, and does not allow the algorithm to reach near native conformations. 

The new hypermacromutation operator may change the conformation dramatically. 
When this operator acts on a peptide chain, all the values of the backbone and 
side chain torsion angles of a randomly chosen residue are reselected from their 
corresponding constrained regions. 

Immune Algorithm{ProteinSequence^ d, dup^ TB , initialsigma^ step, I) 
1. Nc'.— d^dup\ 
2. t : = 0 ; 
3. I f / P^*^ := RandomJnitiaLPop(Protem6'eg'ixence); 
4. else P̂ *̂  := T>mECT{ProteinSequence)\ 
4. Evaluate(p(^)); 
5. while ( -1 Termination_Condition() ) do 
6. p(^^°) := Cloning (P^*), Nc); 
7 pihyp) ._ Hypermutation (p(^^^>); 
8. Evaluate (p(^^p)); 
9. p(<macro) _ Hypermacromutatiou (P^^°); 
10. Evaluate (p(^«^^^)); 

11. {P^'\P^^''''\P^'^'''''^'''>) := Aging(p(*),p(^^P>,p(^""^"\rB); 
12. P(*+1) := ifx + A)-Selection iP^'\P^^'^''\P^'^'''^''^y, 
13. if ( averageFitness(P^*"*'^^) decreases 1—order magnitude ) 
14. then (7*+̂  = cr* - step 
15. t:=t+l', 
16. end_while 

Table 11.2. Immune Algorithm for real PSP problem [Nicosia 2004] 

The immune algorithm designed in this Section can use two different initialisa
tion procedures for the first population of conformations; random initialisation of 
the population, the standard approach, and an initial population of conformations 
given by a global optimisation procedure. In the first method, the protein sequences 
are conformations of torsion angles randomly selected from their corresponding con
strained regions. In the latter, the initial population is constituted by a set of confor
mations created by the Dividing RECTangles (DIRECT) global optimisation algo
rithm [Jones et al. 1993]. The DIRECT algorithm does not use gradient information 
to avoid the local minima inherent in the search space. It can be defined as a pattern 
search method that works by sampling the search space by dividing rectangles. It 
uses a set of exploratory moves to consider the behaviour of the objective function 
at the centres of rectangles. DIRECT balances local and global search by select
ing potentially optimal rectangles to be further explored. We are interested in using 
such an interesting feature of the DIRECT algorithm. DIRECT procedure produces 
an initial population of promising candidate solutions inside a potentially optimal 
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rectangles of the funnel landscape of the PSP. This scheme reduces the number of 
fitness function evaluations of the overall search process to the lowest energy value. 
This is the first known application of DIRECT algorithm to the protein structure 
prediction problem. 

Considering the two different initialisation procedures (devised by boolean variable 
/ ) for the population at initial generation (t = 0), we have the lA starting from a 
random initial population, and the lA-DIRECT approach for the lA starting from 
a population of promising protein conformations created by the global optimiser 
DIRECT. 

For both versions, the main loop of the algorithms is the same. From the current 
population, a number dup of clones will be generated, producing the population 
Pop^''^''\ which will be mutated into Pop^^^^^ by the new hypermutation operator, 
and into Pop^^"^^^) by the new hypermacromutation operator. The other steps 
of the algorithm remaining unchanged. Table 11.3.1 shows the pseudo-code of the 
Immune Algorithm for the structure prediction of real proteins. 

Residue 

Tyr 

Gly 

Gly 

Phe 

Met 

(f) tp 

-86 156 

-154 83 

84 -74 

-137 19 

-164 160 

UJ 

-177 

169 

-170 

-174 

-180 

Xi 

-173 

59 

53 

X2 

79 

95 

175 

X3 X4 

-166 

-180 -59 

Table 11.3. Global minimum energy structure of Met-enkephalin obtained by 
Scheraga and Z. Li [Li & Scheraga 1988] 

11.3.2 Results on Met-enkephalin peptide and IZDD protein 

Met-enkephalin peptide 

The Immune Algorithm has been applied to determine the three dimensional struc
ture of the pentapeptide Met-enkephalin. It is a very short polypeptide, only 5 amino 
acids, and twenty-four variable backbone and side-chain torsion angles (n = 24). 
From a optimisation point of view the Met-enkephalin polypeptide is a paradigmatic 
example of multiple-minima problem. It is estimated to have more than 10^^ locally 
optimal conformations. Nevertheless, the Met-enkephalin (IMET) has defined struc
ture (see table 11.3.1), and an apparent global minimum (with conformational energy 
of —12.90kcal/mol based on ECEPP/2 routine) first located by a Monte Carlo-
minimization method in 4 hours only, in 1987 by Scheraga and Purisima [Purisima 
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Sz Scheraga 1987]. For all these reasons, this peptide is an obvious "test bed", for 
which a substantial amount of in silico experiments has been done [Purisima & 
Scheraga 1987, Li & Scheraga 1988, Kaiser et al 1997, Bindewald et al 1998]. For 
frequent convergence to the global minimum (table 11.3.1), in [Li & Scheraga 1988] 
the authors set a maximum number of energy function evaluations Tmax = 10^. 

Using the lA-DIRECT approach, the initial population of 10 individuals was gen
erated by global optimisation procedure, and run for T^ax = 30275 energy function 
evaluations. After T^ax energy function evaluations, the DIRECT procedure does 
not improve the detection of good conformations. The immune algorithm starting 
from this ad hoc initial conformation was executed for 1500 generations with a pop
ulation size of d= 10 individuals, dupHcation parameter dup = 2, expected life time 
parameter TB = 5, for a maximum number of energy function evaluation equal to 
T^ax = 30000. Hence, considering the computational costs of the DIRECT proce
dure and the lA we have a overall Tmax = T^ax + T^ax = 60275 maximum number 
of energy function evaluations for frequent convergence to the best energy value 
close to the global minimum. The best conformation with the lowest energy value 
of -20.56A;ca//mo/ obtained by lA-DIRECT is reported in table 11.3.2. 

Residue 

Tyr 

Gly 

Gly 

Phe 
Met 

(f) i/j 

0.95 136.67 

-181.69 -36.08 

-180.00 -42.48 

-120.00 -47.03 
-120.00 -16.73 

CO 

-169.44 

-188.63 

-175.28 

-187.71 
-174.28 

X l X2 X3 X4 

-166.93-108.85 12.00 

-59.49 -65.78 
-65.90 -177.93 179.07 -83.74 

Table 11.4. Global minimum energy structure of IMET ohtained by the lA 

Figure 11.1 shows the RMSD and energy values of the protein conformations ob
tained by the Immune Algorithm using the procedure DIRECT to generate the 
initial B cell population. The figure shows a large cluster of conformations around 
energy value 2.88bkcal/mol with an individual conformation with RMSD = 2.835, 
and energy equal to —20 A7kcal/mol, the best conformation obtained by designed 
I A. Figure 11.1 displays a good correlation between RMSD and energy value E, 
suggesting that minimizing E of a small protein using Immune Algorithm will tend 
to drive the conformation toward the true structure. 

Figure 11.2 shows the super imposition of the conformation obtained by IA and the 
Scheraga's conformation using a full atom resolution. Computing the RMSD and 
DME metrics with respect the Cc atoms, and all the atoms of the two structures, 
we have the following results: RMSD = 2.835A, and RMSDc^ = 0.50lA, while in 
terms of DME measure DME = 2.142A and DMEc^ = 0.468A. 
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Fig. 11.1. RMSD values versus Energy values of protein conformations obtained 
by the Immune Algorithm 

Fig. 11.2. In the plot the superimposition of the IMET protein conformation ob
tained by lA and the optimal conformation obtained by Scheraga [Rabow & Scheraga 
1996]; the RMSD of the two structure is 2.835A, the RMSDc^ is 0.490A. In terms 
of DME measure for the two structures we have DME = 2.211 A and DMEc^ — 
0.454A 

Table 11.3.2 shows the comparisons of the two designed immune algorithm versions 
with other folding algorithms. For each algorithm, the table reports the energy func
tion used, the mean and standard deviation energy values, and the best RMSD mea
sure with respect the Scheraga's conformation, the accepted optimal conformation. 
It is important to note that the optimal conformation for ECEPP/2 and CHARMM 
energy functions are different. From a structural similarity point of view, it is more 
significant to consider the RMSD. In terms of RMSD value, the lA-DIRECT obtains 
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Algorithm 

Scheraga's MC 

[Li & Scheraga 1988] 

lA-DIRECT 

REGAL Tight constr. 

[Kaiser et al. 1997] 

lA 

Lamarkian 

[Kaiser et al. 1997] 

Baldwinian 

[Kaiser et al. 1997] 

REGAL Loose constr. 

[Kaiser et al. 1997] 

SGA 

[Kaiser et al. 1997] 

REGAL 

[Kaiser et al. 1997] 

standard GA 

[Bindewald et al. 1998] 

GA with sterical constraint 

[Bindewald et al. 1998] 

Energy funct. 

ECEPP/2 

CHARMM27 

CHARMM 

CHARMM27 

CHARMM 

CHARMM 

CHARMM 

CHARMM 

CHARMM 

ECEPP/2 

ECEPP/2 

Energy (kcal/mol) 

-12.90 

-20.47 ±1.54 

-23.55 ±1.69 

-19.92 ±2 .87 

-28.35 ±1.29 

-22.57 ±1.62 

-22.01 ± 2.69 

-22.58 ±1 .57 

-24.92 ± 2.99 

-3.17 ±0 .37 

-2.35 ±0 .33 

RMSD 

n.a. 

2.835A 

3.23A 

3.30A 

3.33A 

3.96A 

4.25A 

4.51A 

4.57A 

Table 11.5. Immune Algorithms versus Folding algorithms for IMET 

the structure more similar to the the accepted optimal conformation of Scheraga 
with a computational cost of Tmax = 60275 energy function evaluations. The IA 
with a random initial population reaches a conformation with the best RMSD of 
3.30 with 150000 energy function evaluations. The algorithms designed in [Kaiser et 
al. 1997] were allowed to reach 150000 evaluations, while in [Bindewald et al. 1998] 
this information is not available. 

Considering both versions of the lA algorithm, we can claim that they are competi
tive and effective search methods in the conformational search space of real proteins. 
In particular, the lA-DIRECT approach is very effective and efficient in terms of 
quality solution and computational effort. 
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Fig. 11.3. Predicted (left plot) and native (right plot) conformations for IZDD 
protein {DMEc^ = 1.499A, RMSDc^ = 2.220A) 

Disulfide-Stabilized Mini Protein A Domain (IZDD) 

IZDD is a two-helix peptide of 34 residues [Starovasnik et al. 1997]. For this pro
tein the secondary structure constraints was predicted by the SCRATCH predic
tion server [Pollastri et al. 2002]. The best computed structure matches the crystal 
structure with DMEc^ = 1.499A and RMSDc^ = 2.220A(see figure 11.3) and the 
energy of the structure is —1037.831 kcal/mol. 

11A PSP as a Multi-Objective Optimisation Problem 

In this second part of Chapter, we investigate the applicability of a multi-objective 
formulation of the Protein Structure Prediction to medium size protein sequences 
(46 — 70 residues). In particular, we introduce a modified version of Pareto Archived 
Evolution Strategy (PAES) [Knowles & Corne 1999] which makes use of immune 
inspired computing principles and which we will denote by "I-PAES". Experimen
tal results on the test bed of five proteins from PDB show that I-PAES is better 
than (H-l)-PAES both in terms of best solution found and convergence. Moreover, 
I-PAES is very competitive with other single-objective evolutionary algorithms and 
multi-objective evolutionary algorithms proposed in literature, both in terms of min
imal energy value found, and RMSD and DME metrics. 

When an optimisation problem involves more than one objective function, the task 
of finding one (or more) optimum solution, is known as multi-objective optimisation. 
In general, most bioinformatics problems involve multiple, confiicting, and sometime 
noncommensurate objectives. The PSP naturally involves multiple and confiicting 
objectives [Cutello et al. 2006]. DiflFerent solutions (the 3D conformations) may in
volve a trade-off (the confiicting scenario in the funnel landscape) among diff'erent 
objectives. An optimum solution with respect to one objective may not be opti
mum with respect to another objective. As a consequence, one cannot choose a 
solution which is optimal with respect to only one objective. In general, in problems 
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with more than one conflicting objective, there is no single optimum solution. In
stead, there exist a number of solutions which are all optimal: the Optimal Pareto 
front and the Observed Pareto front. This is the fundamental difference between a 
single-objective and multi-objective optimisation task. Hence, for a multi-objective 
optimisation problem we can define the following procedure: 

1. find the Observed Pareto front with a wide range of values for objectives; 
2. choose one of the obtained solutions using some "higher-level information". 

Lamont et al. [Day et al. 2001] reformulated PSP as a multi-objective optimisation 
problem and used a multi-objective evolutionary algorithms ( M O F M G A ) for the 
structure prediction of two small peptide sequences: [Met]-Enkephalin (5 residues), 
Polyalanine (14 residues). In this Chapter we investigate for the first time the ap
plicability of such a multi-objective approach to medium size protein sequences. 

C o n s t r a i n t s 

The size of the conformational space, backbone torsion angles are bounded in regions 
derived from secondary and super-secondary structure prediction (table 11.4). These 

Secondary and Super-secondary Structures (j) ip 

H (a-helix) 

E (/^-strand) 

a 

b 

e 

I 

t 

undefined 

[-75°,-55°] [-50°,-30°] 

-130°,-110°] [110°, 130°] 

-150° , -30°] [-100°, 50°] 

-230° , -30°] [100°, 200°] 

30°, 130°] [130°, 260°] 

30°, 150°] [-60°, 90°] 

-160° , -50°] [50°, 100°] 

[-180°, 0°] [-180^180°] 

Table 11.6. Corresponding regions of the Secondary and Super-secondary Structure 
Constraints 

regions are the constraints of the protein structure prediction problem, they define 
the feasible region of the multi-objective optimisation. Side chain torsion angles are 
constrained in regions derived from the backbone-independent rotamer library of 
Roland L. Dunbrack [Dunbrack &: Cohen. 1997]. Super-secondary structure is defined 
as the combination of two secondary structural elements with a short connecting 
peptide between one to five residues in length. A short connecting peptide can have 
a large number of conformations. They play an important role in defining protein 
structures. The conformations of the residues in the short connecting peptides are 
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classified into five major types, namely, a, 6, e, /, or i [Sun &: Jang 1996] each 
represented by a region on the (j)-ip map. Sun et al. [Sun et al. 1997] developed 
an artificial neural network method to predict the 11 frequently occurring super-
secondary structure: 

H-6-H, H-t-H, H-66-H, H-//-E, E-aa-E, E-ea-E, 

H-/66-H, H-/6a-E, E-aa/-E,E-aaa/-E, and H-/-E, 

where H and E represent a-helix and /^-strand, respectively. Side chain constraint 
regions are of the form: [?TI—cr, m+cr]; where m and a are the mean and the standard 
deviation for each side chain torsion angle computed from the rotamer library. Under 
these constraints the conformation is still highly flexible and the structure can take 
on various shapes that are vastly different from the native shape. 

Figure 11.4 shows predicted and native secondary and super-secondary structure of 
the five proteins used in the present Chapter as test bed. 

IROP: 
1-56 
Sequence 
Predicted 
Native 

1 2 3 4 5 

MTKQEKTALNMARFIRSQTLTLLEKLNELDADEQADICESLHDHADELYRSCLARF 

HHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHH 

HHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHH 

lUTG: 

1-70 
Sequence 
Predicted 
Native 

1 2 3 4 5 6 7 
GICPRFAHVIENLLLGTPSSYETSLKEFEPDDTMKDAGMQMKKVLDSLPQTTRENIMKLTEKIVKSPLCM 
HHHHHHHHHHHHHHHbbHHHHHHHHHHHlbbHHHHHHHHHHHHHHHHbbHHHHHHHHHHHHHHHHHHHH 

HHHHHHHHHHH bbHHHHHHHHHH IbbHHHHHHHHHHHHHHHHbbHHHHHHHHHHHHHHHH 

ICRN: 
1-46 
Sequence 
Predicted 
Native 

1 2 3 4 
TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPGATCPGDYAN 
EEE HHHHHHHHHHHHHlbbHHHHHHHHlEEEE HHHHH 

EEEE HHHHHHHHHHHHHlbbHHHHHHHHlEEEE 

1R69: 

1-63 
Sequence 
Predicted 
Native 

1 2 3 4 5 6... 
SISSRVKSKRIQLGLNQAELAQKVGTTQQSIEQLENGKTKRPRFLPELASALGVSVDWLLNGT 
HHHHHHHHHHHHHlbbHHHHHHHHlbbHHHHHHHHH HHHHHHHHHHlbbHHHHH 
HHHHHHHHHHHH IbbHHHHHH IbbHHHHHHHHH HHHHHHH IbbHHHHHH 

ICTF: 

53-120 

Sequence 

Predicted 

Native 

6 7 8 9 10 11 12 

EFDVILKAAGANKVAVIKAVRGATGLGLKEAKDLVESAPAALKEGVSKDDAEALKKALEEAGAEVEVK 

EEEEEEE HHHHHHHHHHHHlbbHHHHHHHHHHEEEEEEE HHHHHHHHHHHHHHIEEEEEE 

EEEEEEE HHHHHHHHHHHHHlbbHHHHHHHHH EEEEE HHHHHHHHHHHHHHl EEEEE 

Fig. 11.4. Comparison of the predicted secondary and super-secondary structures 
(predicted) and the X-ray-elucidated secondary and super-secondary structure (na
tive) of IROP, lUTG, ICRN, 1R69, and ICTF 
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M u l t i - o b j e c t i v e formulat ion 

The energy function CHARMM (11.1) is decomposed in two partial sums: bonded 
and non-bonded atom energies, following the definition (11.1): 

Ebond = Yl^k (11-4) 
fc=l 

7 

/2 = Enon-bond = J^ Ek (H-^ ) 
fc=6 

These two functions represent our minimization objectives^ the torsion angles of the 
protein are the decision variables of the multi-objective problem, and the constraint 
regions are the variable bounds. To evaluate how similar the predicted conformation 
is to the native one, we employ two frequently used metrics: Root Mean Square 
Deviation (RMSD) and Distance Matrix Error (DME) on Ca atoms (see Section 11.3 
for the definition of these metrics). 

11 .4 .1 T h e I m m u n e P a r e t o Arch ived E v o l u t i o n a r y S t r a t e g y 
A l g o r i t h m 

The algorithm PAES (Pareto Archived Evolutionary Strategy) was proposed for the 
first time by Knowles and Corne in 1999 [Knowles &; Corne 1999]. PAES is a multi-
objective optimiser which uses a simple (1+1) evolution strategy. Nonetheless, it is 
capable of finding diverse solutions in the Observed Pareto front because it maintains 
an archive of nondominated solutions which it exploits to accurately estimate the 
quality of new candidate solutions. At any iteration t, there is a candidate solution 
Ct and a mutated solution nit which must be compared for dominance. Acceptance 
is simple if one solution dominates the other. In case neither solution dominates 
the other, the new candidate solution is compared with the reference population 
of previously archived nondominated solutions. If comparison to the population in 
the archive fails to favour one solution over the other, the tie is split to favour the 
solution which resides in the least crowded region of the space. A maximum size of 
the archive is always maintained. The crowding procedure is based on recursively 
dividing up the M-dimensional objective space in 2^ equal-sized hypercube, where 
d is a, user defined depth parameter. The algorithm proceeds until a fixed number 
of iterations is reached. 

I-PAES is a modified version of (14-1)-PAES[Knowles & Corne 1999, Knowles & 
Corne 2000] with a different solution representation (polypeptide chain) and immune 
inspired operators: cloning and hypermutation [Cutello & Nicosia 2004]. Hypermu-
tation can be seen as a search procedure that leads to a fast maturation during the 
affinity maturation phase. The clonal expansion phase triggers the growth of a new 
population of high-value solutions centered on a higher affinity value. The algorithm 
starts by initialising a random conformation. From the protein sequence we generate 
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I-PAES(dttp, depths archivesize, objectives) 
1 t — 0* 
2. Initialize(c); 
3. Evaluate(c); 
4. AddToArchive(c); 
5. while(not(Termination())) 

/ * START IMMUNE PHASE*/ 

6. Pop''^'' := Cloning(c,dup); 
7. Pop^yP := Hypermutation(Pop^^''); 
8. Evaluate(Pop^^P); 
y. m := 

/ * END IMMUNE PHASE*/ 

/*Generate initial random solution*/ 
/*Evaluation of initial solution*/ 
/*Add c to archive*/ 

/*Clonal expansion phase*/ 
/*Affinity maturation phase*/ 
/*Evaluation phase*/ 
/*Selection phase*/ 

/ * START ( 1 + 1 ) - P A E S * / 
10. if(c dominates m) discard m; 
11. else if(m dominates c) 
12. AddlbArchiveCm); 
13 . c : = TTi; 
14. else if(m is dominated by any member of the archive) discard ?n; 
15. else test(c, m, archivesize^ depth) to determine which becomes 
16. the new current solution and whether to add m to the Archive; 
17. t := t + 1; 
18. endwhile 

Table 11.7. I-PAES for PSP as Multi-objective Optimisation [Nicosia 2004] 

a random conformation in torsion angles. The torsion angles ((/>,'0,xO are selected 
randomly from the constraint regions derived from the super-secondary structure 
predicted with the Artificial Neural Network method developed by Sun et al. [Sun 
et al. 1997]. 

After that, the energy of the conformation (a point in the landscape) is evaluated 
using routines from TINKER Molecular Modeling Package [Huang et al. 1999]. First, 
the protein structure in torsion angles is transformed in cartesian coordinates using 
the PROTEIN routine. Then the conformation is evaluated using the ANALYZE 
routine, that gives back the CHARMM energy potential of the structure. 

At this point, we have the main loop of the algorithm. From the current solution, a 
number S of clones will be generated, producing the population (Pop^^^) which will 
be mutated into {Pop^'^^) and then evaluated reselecting the best one. From this 
moment on, the algorithm proceeds following the standard structure of (1+1)-PAES. 
Table 11.4.1 shows the pseudo-code of I-PAES for the protein structure prediction 
as a Multi-Objective Optimisation problem. 

Hypermutation operators 

Two kinds of mutation operators were used together in the affinity maturation phase 
(line 7 of I-PAES). The first mutation operator, muti, may change the conformation 
dramatically. When this operator acts on a peptide chain, all the values of the 
backbone and side chain torsion angles of a randomly chosen residue are reselected 
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from their corresponding constrained regions (see table 11.4). The second mutation 
operator, mut2-, performs a local search of the conformational space. It will perturb 
all torsion angles (0, -0, Xh) of a randomly chosen residue with the law: x^*''̂  = x*H-u 
where the mutation vector u is computed from u = (tti, 1*2, • • •, Un)-, Uj = N{0, a) 
where x̂ *̂  is a B cell receptor (a conformation) at time step t, and iV(0, a) is a real 
number generated by a Gaussian distribution of mean fi = 0 and standard deviation 
cr = 3. In contrast with the hypermutation operator used in the previous Section 
(Sect. 11.3.1), in this new hypermutation operator a is fixed for all the searching 
process. Preliminary experimental results give good convergence performance using 
a predefined a value. The first half of Pop^^° is mutated using muti and the second 
half using mut2. 

Two mutation rates are studied. The first one is a static scheme where each clone 
is mutated only once using one of the two possible mutation operators. We call 
I-PAES(l-mut) the algorithm version that uses this mutation rate. 

The second mutation rate instead is similar to the scheme presented in [Cui et al. 
1998]. The number of mutations decreases as the search method proceeds following 

the law: M =l-\-¥xe where L is the number of residues, k is set to 6 for muti 
and 4 for mut2 and 7 controls the shape of the mutation rate. We call I-PAES(M) 
the algorithm version that uses this second mutation rate. 

11.4.2 Immune PAES dynamics on I C R N protein 

To show the dynamic behaviour of the algorithm, we present in figure 11.5 two 
typical plots produced by a generic run of I-PAES on Cramhin (1 CRN). Crambin is 
a protein of 46 amino acids with two a—helix and a pair of ^—strands. The predicted 
supersecondary structures (see figure 11.4) are: 

(3 — loop — a — Ibb — a — I — p — loop — a. 

The top plot of figure 11.5 shows best solution energy versus iterations. The non-
bound term endures strong fluctuations, and this happens because it includes van-
der-Walls interaction energy. During the folding process, it is highly probable that 
conformations with atom clashes can be created which will produce high van-der-
Walls energy levels. 

The bottom plot of figure 11.5 shows variations of the archive size at each iteration. 
Archive size falls back when the algorithm finds a solution which is better, in terms 
of dominance, than a number of solutions in the archive, which are all eliminated in 
favour of the new solution. 

The figure 11.6 shows the Pareto front of the last archive for ICRN best run. In 
figure 11.6, the nondominated solutions are subdivided into three clusters which 
correspond to the three regions of the Pareto front. 
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20000 4mm eocKX) aoooo looooo 

Fig. 11.5. Best energy value (top plot), and Archive size (bottom plot) versus 
iterations for ICRN 

In table 11.4.2 we compared I-PAES and its results to other works in literature and 
others MOEA's, in particular NSGA2 [Deb et al 2002], that we implemented and 
tested on protein structure prediction of real proteins. 

In [Cooper et al 2003] the best RMSD found for ICRN, using a Hill-cHmbing genetic 
algorithm, is 5.6A and with average number of evaluation to solution {AES) equal 
to 5x 10^ fitness function evaluations. In this case, our method performed better both 
in terms of best solution found and time efficiency. Inspecting the results reported in 
table 11.4.2, both versions of I-PAES outperform the good RMSD value obtained by 
GA designed by Dandekar and Argos [Dandekar & Argos 1996] which uses 4 x 10^ 
fitness function evaluations. Moreover, both Dandekar et al. [Dandekar & Argos 
1996] and Corne et al [Cooper et al 2003] used a reduced representation for the 
protein where side chain atoms are not included and are represented only by the 
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Fig. 11.6. Pareto front for ICRN 

Algorithm 

I-PAES(M) 

I-PAES(l-mut) 

Dandekar and Argos' GA[Dandekar Sz Argos 1996] 

Hill-climbing GA [Cooper et al. 2003] (with hydrophobic term) 

(1+1)-PAES 
NSGA2 (with high-level operators) 
Hill-climbing GA [Cooper et al. 2003] (without hydrophobic term) 

NSGA2 (with low-level operators) 

RMSD 

4.316A 

4.731A 

5.4A 

5.6A 

6.I8IA 
6.447A 
6.8A 

IO.34A 

AES 

2.255 X 10^ 

2.255 X 10^ 

4 x 10^ 

5 x 10^ 

2.255 X 10^ 
2.5 X 10^ 
10^ 

2.5 X 10^ 

Table 11.8. Best results between (l-M)-PAES, I-PAES, NSGA2, Hill-climbing GA 
[Cooper et al 2003] and Dandekar and Argos' G A [Dandekar & Argos 1996] on 
ICi^A^ 

protein mainchain. The (/> and ifj torsion angle values are taken from a set of seven 
and four possible standard conformations in known tertiary structures respectively. 
In this way, the space of conformations is reduced but the model is really rigid. 

Two possible versions of NSGA2 were implemented. The first one uses standard 
low-level operators (SBX crossover and polynomial mutation), and the protein is 
considered as a long sequence of torsion angles. The second one uses high-level 
operators (naive crossover and the scheme of mutation used by I-PAES). In this 
case, the protein is manipulated at the amino acid level. The dimension of the 
population is 300. The better performance of the high-level version is very clear. 
Table 11.4.2 shows the comparison between I-PAES, (1+1)-PAES, NSGA2, Hill-
chmbing GA [Cooper et al. 2003] and Dandekar et aVs GA [Dandekar & Argos 
1996] on ICRN. 
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11 .4 .3 E x p e r i m e n t a l R e s u l t s 

The simphcity of having effectively only two secondary structures is that there are 
only three (pairwise) combinations of them that can be used to construct proteins; 
so giving the three major structural classes: 

1. a—helix with a—helix, 
2. a—helix with /?—sheet, and 
3. ^—sheet with /3—sheet. 

Incorporation of a /^-sheet, however, imposes a long-range constraint across the 
structure. The /3-sheet has free hydrogen bonds on its two edges, which consequently 
prevents the sheet from terminating in the hydrophobic core. This divides the core 
into two and, if considered more generally, imposes a layered structure onto the 
further arrangement of secondary structures in the protein. 

A l l - a pro te ins 

The all—a protein class is dominated by small folds, many of which form a simple 
bundle with helices running up then down. The interactions between helices are not 
discrete (in the way that hydrogen bonds in a y^—sheet are either there or not) which 
makes their classification more difficult. Set against this, however, the size of the 
a—helix (which is generally larger than a /5—strand) gives more interatomic contacts 
with its neighbours (relative to the a /3—strand) allowing interactions to be more 
clearly defined. 

All—/3 pro te ins 

The all—/? proteins are often characterized by the number of /5—sheets in the struc
ture and the number and direction of /?—strands in the sheet. This leads to a fairly 
rigid classification scheme which can be sensitive to the exact definition of hydrogen 
bonds and /?—strands. Being less rigid than an a—helix, the /?—sheets can be rela
tively distorted often with differing degrees of twist of fragmented or extra strands 
on the edges of the sheet. Various patterns can be identified in the arrangement of 
the /^-strands, often giving rise to the identification of recurring motifs. 

a — /3 pro te ins 

The a — P protein class can be subdivided roughly into proteins that exhibit a 
mainly alternating arrangement of a—helices and /?—strands along the sequence 
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Protein 
lROP(56 aa) 
class: oc 
energy: -667.0515 kcal/mol 
1UTG(70 aa) 
class: a 
energy: 202.7321 kcal/mol 
1 CRN (46 aa) 
class: a -f /3 
energy: -142.4612 kcal/mol 
1R69(63 aa) 
class: a 
energy: -676.5322 kcal/mol 
1CTF(68 aa) 
class: a -\- (3 
energy: 230.0890 kcal/mol 

Algorithm 
I-PAES(M) 
I-PAES(l-mut) 
(14-1)-PAES 
I-PAES(M) 
I-PAES(l-mut) 
(1+1)-PAES 
I-PAES(M) 
I-PAES(l-mut) 
(1+1)-PAES 
I-PAES(M) 
I-PAES(l-mut) 
(1+1)-PAES 
I-PAES(M) 
I-PAES(l-mut) 
(1+1)-PAES 

min (kcal/mol) 
-526.9542 
-661.4819 
2640.7719 
357.9829 
282.2497 
7563.0714 
410.0382 
232.2967 
1653.9359 
264.5602 
211.2640 
9037.8915 
218.9968 
71.5572 
1424.3397 

mean (kcal/mol) 
-417.4685 
-554.9819 
833976.1875 
619.8551 
511.4623 
53937.0271 
464.2972 
357.2083 
27995.0374 
397.6853 
290.0966 
2636441.5872 
281.27994 
161.4119 
52109.3556 

a (kcal/mol) 
98.2774 
82.9940 
1497156.7511 
174.8500 
142.1591 
55304.4139 
42.4524 
75.9134 
43275.1845 
74.9013 
46.3440 
4462510.0991 
64.3010 
48.8140 
44669.0231 

Table 11.9. Results of application of I-PAES (both versions) and (1+1)-PAES 
to the test bed of five proteins used in [Cui et al. 1998]. For each algorithm, the 
minimum, the mean and the standard deviation on ten independent runs of best 
energy values are reported. For each protein were reported, the Protein Data Bank 
(PDB) identifier, the length and the approximate class (a-helix, ^-sheet) 

and those that have more segregated secondary structures. The former class includes 
structures in which the secondary structures are arranged in layers and those that 
form a circular of barrel-like arrangement. Recurring folds can also be identified in 
the latter type. 

C o m p a r i s o n s 

To assess the quality of the prediction abihty of I-PAES, hence we need to face 
protein instances that belong to all the above-cited classes of proteins. 

Tables 11.9 and 11.4.3 show results applying I-PAES(M), I-PAES(l-mut) and (1+1)-
PAES to the five PDB proteins on ten independent runs. Inspecting the data re
ported in data one can seen as the five protein instances have been sorted by classes: 
a proteins, f3 proteins, and a + ^ proteins. 

We set the maximum number of fitness function evaluations (Tmax) to 2.255 x 10^ 
(so to compare it to [Cui et al. 1998]), a minimal duplication value (<5=2), archive 
size of 300 and depth = 4. The mutation operator used for (1+1)-PAES is the local 
mutation mut2, since PAES is based on a local search strategy. From table 11.9 is 
clear that both versions of I-PAES perform better than (1+1)-PAES. Minima energy 
values obtained by I-PAES are closer to those of the native structure. Moreover, the 
high value of the standard deviation for (1+1)-PAES shows worse convergence than 
I-PAES. 
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Protein 

lROP(56 aa) 
class: a 

1UTG(70 aa) 
class: a 

1 CRN (46 aa) 
class: a + /3 

1R69(63 aa) 
class: a 

1CTF(68 aa) 
class: a -{- f3 

Algorithm 

I-PAES(M) 
I-PAES(l-mut) 
(1 + 1)-PAES 
GA[Cui et al. 1998] 
I-PAES(M) 
I-PAES(l-mut) 
(1+1)-PAES 
GA[Cui et al. 1998] 
I-PAES(M) 
I-PAES(l-mut) 
(1+1)-PAES 
GA[Cui et al. 1998] 
I-PAES(M) 
I-PAES(l-mut) 
(1+1)-PAES 
GA[Cui et al. 1998] 
I-PAES(M) 
I-PAES(l-mut) 
(1 + 1)-PAES 
GA[Cui et al. 1998] 

min 

DME(A) 
1.684 
2.016 
4.919 
1.48 
3.474 
4.498 
4.708 
3.47 
3.436 
4.137 
4.676 
2.73 
4.091 
5.932 
5.167 
4.48 
6.822 
8.081 
9.609 
4.00 

RMSD(A) 
3.740 
4.110 
6.312 

-
4.272 
5.117 
6.047 

-
4.316 
4.731 
6.181 
-
5.057 
8.425 
7.599 

-
10.121 
10.691 
12.092 

-

mean 
DME(A) 
4.444 
3.405 
9.465 

-
5.417 
5.221 
6.637 

-
5.057 
5.156 
6.700 
-
7.867 
7.218 
7.589 

-
10.773 
9.192 
10.534 

-

RMSD(A) 
6.462 
5.592 
10.111 

-
7.404 
6.351 
8.936 

-
5.874 
5.817 
7.778 
-
9.630 
9.557 
9.607 

-
13.559 
11.303 
12.957 

-

a 

DME(A) 
2.639 
1.036 
3.866 

-
1.484 
0.817 
1.242 

-
1.278 
0.758 
2.164 
-
0.815 
0.669 
2.544 

-
1.351 
0.988 
0.936 
-

RMSD(A) 
2.661 
1.128 
3.468 

-
2.330 
1.066 
1.647 

-
0.960 
0.726 
1.404 
-
0.911 
0.551 
1.809 

-
0.727 
0.468 
0.832 

-
Table 11.10. Results of application of I-PAES (both versions) and (1+1)-PAES 
to the test bed of five proteins used in [Cui et al. 1998]. For each algorithm, the 
minimum, the mean and the standard deviation on ten independent runs for DIME 
and RMSD values are reported. For each protein we report, the PDB identifier, the 
length and the approximate class (a-helix, /?-sheet).Also shown is the best DIVIE 
value obtained for each protein respect the GA proposed in [Cui et al. 1998] (no 
RMSD values were presented by the authors) 

.r\„ 

< 
S 
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Fig. 11.7. IROP: predicted structure (left plot) with DIVIE 
= 3.740A, native structure (right plot) 

1.684A and RMSD 

In table 11.4.3 the best DME and RMSD values are always obtained with I-
PAES(M), although I-PAES(l-mut) reaches better energy values. The conforma
tions in figures 11.7, 11.8, and 11.9 show the predicted structures [Huang et al 
1996] (in wire-style) calculated using I-PAES algorithms versus the native structure 
for the five proteins examined. 
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Fig. 11.8. lUTG: predicted structure (left plot) with DME = 3.474A and RMSD 
= 4.272A, native structure (right plot) 

Fig. 11.9. ICRN: predicted structure (left plot) with DME = 3.436A and RMSD 
== 4.316A, native structure (right plot) 

Table 11.4.3 shows the best DME values obtained by the genetic algorithm proposed 
in [Cui et al. 1998] (no values were presented by the authors) on the same protein 
test bed. Results obtained by GA [Cui et al. 1998] are comparable to those obtained 
I-PAES. I-PAES did not perform well for ICTF where GA[Cui et al. 1998] reached 
a better DME value. 

11.5 Conclusions 

Experimental results on Met-Enkephalin peptide and Disulfide-Stabilized Mini Pro
tein A Domain (IZDD) show how the designed Immune Algorithm for single-
objective optimisation is a very competitive and effective search method in the con
formational search space of real proteins. In particular, the lA-DIRECT approach 
is very efficient in terms of quality solution and computational cost comparing the 
results of the current state-of-art algorithms. A short protein sequence, the Met-
Enkephalin peptide (a well-known test bed), has been guided by Immune Algorithm 
to folds resembling its crystal structure with deviation from observed structure of 
2.8 —2.9A for Ca atoms. At our knowledge, the immune algorithm designed obtained 
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the best result for the IMET peptide. The good correlation between RMSD and en
ergy value E^ suggesting that minimizing the energy function of a small protein using 
Immune Algorithm will tend to drive the conformation toward the true structure. 
Moreover, the PSP has been faced as a multi-objective optimisation problem using 
an hybrid immune algorithm. 

The global fold of the test bed proteins have been computed from their sequence, 
with deviations from crystal structure of 1 —4 DME A for Ca atoms. We proposed a 
modified version of the algorithm PAES that uses immune inspired principles (Clonal 
Expansion and Hypermutation operators) as a new search method for PSP. The 
obtained algorithm, denoted by I-PAES, has better performance than the standard 
(1+1)-PAES for PSP both in terms of best energy and metrics (DME, RMSD) 
solutions. Moreover, I-PAES has better convergence than PAES as shown by the 
smaller values of the standard deviation in 10 independent runs. For the first time, 
a multi-objective approach was used to fold medium size proteins (46-70 residues), 
and the results are comparable and sometimes better than other approaches in 
literature. Lamont et al. were the first to study PSP as multi-objective problem, but 
in their work [Day et al. 2001] was related only to two peptide sequences (5 and 14 
residues). Experimental results on ICRN protein show also a better performance of 
the PAES algorithms (I-PAES and (14-1)-PAES) with respect to genetic algorithms 
[Dandekar & Argos 1996], hill-climbing genetic algorithms [Cooper et al. 2003], and 
NSGA2 multi-objective optimisation evolutionary algorithm with low and high level 
representations. Our prediction algorithms, based on general full-atom potential 
energy models, are expanded to incorporate secondary and supersecondary structure 
information into the search process. We contrast our method with the state-of-art 
prediction algorithms obtaining good results in terms of energy values and RMSD 
and DME values. 

Finally, the experimental results of the Chapter indicates that Multi-Objective Op
timisation approach using real-valued evolutionary algorithms for determining the 
protein structure of real proteins has excellent potential to determine and investi
gate the Observed Pareto front in order to select a stable fold protein near native 
conformation, under biological conditions, satisfying the objectives as "best" possi
ble. 
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Summary. Embodiment may help to reduce the computational burden on a sys
tem, by transferring some of that burden to the complex embodying environment. 
Embodiment can be viewed as a property not just of situated material systems, but 
of any suitably complex system engaged in a complex intertwined feedback relation
ship with its suitably complex environment. Various features and requirements of 
embodiment are examined in the context of natural and of artificial immune sys
tems. This leads to a set of suggested design principles for engineering embodied 
systems and their environments. 

12.1 Embodiraent : what is it? 

12.1.1 Embodied in an environment 

Consider a system that can sense and manipulate its environment, with its internal 
state depending on what it senses, and its manipulations depending on its state. 
Those manipulations then change the environment, and hence what is subsequently 
sensed, and so change the system's subsequent state and its further manipulations. 
This produces a complex dynamical stigmergic feedback process: the system is em
bodied in its environment. 

Biological immune systems, like all biological processes, are made from physical 
material, they are situated in and interact with a physical environment, and they 
are constrained by physical laws such as conservation of matter and energy. Arti
ficial immune systems (AIS) and other software systems, on the other hand, are 
informational, exist in the virtual world of the computer, and labour under no such 
constraints. Does this diff'erence matter? 
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A new generation of roboticists [Brooks 1991a, Brooks 1991b], AI researchers [Mat-
urana & Varela 1980, Varela et al. 1991, Simon 1996], psycholinguists [LakofF & 
Johnson 1980, LakofF 1987, Lakoff & Niinez 2000], and cognitive philosophers [Clark 
1997] insist that it does. They argue that the rich dynamical interaction between a 
system embodied in its complex physical environment crucially gives something to 
the system not achieved by pure virtual or symbolic or simulated inputs alone. 

Much of Brooks' robotics work has focused on the use of the environment as a 
resource; rather than requiring the robot to abstract data from the world, to form 
some impoverished model, [Brooks 1991b] exhorts the robot's designer to "wse the 
world as its own moder. 

As an illustration of the importance of a complex environment, Herbert Simon invites 
us to imagine an ant walking on the beach: 

Viewed as a geometric figure, the ant's path is irregular, complex, hard to de
scribe. But its complexity is really a complexity in the surface of the beach, 
not a complexity in the ant . . . The apparent complexity of its behaviour over 
time is largely a reflection of the complexity of the environment in which it 
finds itself [Simon 1996] 

Clark also emphasises the crucial involvement of the environment: 

the deeply misguided vision of the environment as little more than the 
stage that sets up a certain problem. ... the environment [is] a rich and 
active resource—a partner in the production of adaptive behavior. 

[Clark 1997] 

So, the environment itself is a resource, and embodiment may help to reduce the 
computational burden on the system itself, with some, or much, being obtained "for 
free" from the complex embodying environment. Of course, nothing is really for free, 
and the requirement for embodiment puts some interesting constraints on the design 
and deployment of embodied systems (later). 

12.1.2 Coupled to the environment 

But what precisely is such "embodiment"? [Kushmerick 1997, Quick Sz Dautenhahn 
1999, Quick et al. 1999, Quick et al. 2000] note that these roboticists and AI re
searchers rarely bother to define the term beyond saying something like having some 
(physical) body interacting with some (physical) environment They note that this 
(lack of) definition, along with the accompanying assumption of material situated-
ness, makes it particularly difficult to use the concept of embodiment when talking 
about Artificial Life, or virtual artefacts such as software agents. 
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Quick et al. are keen to develop a definition that makes as few assumptions as 
possible, in particular, one that has no requirement for the embodied system to be 
in some sense intelligent or cognitive or neuronal. So they turn to the concept of 
^^structural coupling'^ [Maturana & Varela 1980], and the key idea of 

non-destructive perturbations between a system and its environment, each 
having an effect on the dynamical trajectory of the other, and this in turn 
effecting the generation of and responses to subsequent perturbations. 

[Quick & Dautenhahn 1999] 

[Clark 1997] dubs such close structural coupling ^^continuous reciprocal causation'\ 
These ideas of dynamical trajectories, at tractors, and bifurcations, which encom
pass both situated continuous physical processes and abstract discrete computations 
(captured in the appropriate phase or state space), are also important, implicitly 
or explicitly, in the writings of [Maturana k, Varela 1980, Varela et al. 1991, Kelso 
1995, Chiel&Beer 1997]. 

Focusing on this coupling between the system X and its environment E^ [Quick & 
Dautenhahn 1999, Quick et al. 1999, Quick et al. 2000] offer the following definition 
of embodiment: 

A system X is embodied in an environment E if perturbatory channels exist 
between the two. That is, X is embodied in E if for every time t at which 
both X and E exist, some subset of E's possible states with respect to X have 
the capacity to perturb X's state, and some subset of X's possible states with 
respect to E have the capacity to perturb E's state. 

They suggest that this definition in terms of coupling can be used as a basis to 
quantify the degree of embodiment, in terms of measures of the perturbatory band-
widths and modalities, size of affected state subspaces, size of effect on state spaces, 
scope for variation in behaviour, structural plasticity, computational power in the 
interaction, and so on. They conclude that for rich embodiment one needs both a 
large perturbatory bandwidth (rich sensors and actuators to enable complex cou
plings with the environment) and large scope for variation in behaviour (complex 
internal dynamics for the perturbations to work on). 

And most importantly for the arguments in this chapter, they note that their def
inition is "ontologically neutral": it is applicable to systems embodied in software 
(virtual) environments as well as to those embodied in material (physical) environ
ments. 

In summary, some authors argue that embodiment is essential for certain kinds of 
systems, and others argue that it is a property not just of situated material systems, 
but of any suitably complex system engaged in a complex intertwined feedback 
relationship with its suitably complex environment. 
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One feature of embodiment is that, because of the complex feedback relationship, an 
embodied system cannot be fully analysed in isolation: it can be analysed only in the 
context of the environment in which it is embodied. The fact that this environment 
is usually open (unbounded) has interesting consequences for such analysis. 

12.1.3 Some terminology 

We follow Quick et aUs definitions, and so have a computational system embodied 
in an environment (figure 12.1). 

... embodied in... 

computational 
system X, 

with complex 
internal dynamics 

sensors 
analogue... digital 
open ... predefined 

material... virtual 
open 

Fig. 12.1. A computational system embodied in an environment 

The compu ta t i ona l sy s t em itself necessarily runs on some form of physical hard
ware platform, but that hardware does not constitute the embodiment: it is the 
coupling with the environment that provides the embodiment. (The boundary be
tween the computational hardware and its environment may be drawn in diff'er-
ent places, depending on the analysis being performed. For example, in a robot, it 
might sometimes be useful to consider the robot body as part of the environment, 
and sometimes as part of the computational system.) The computational hardware 
platform may be analogue, digital, or a hybrid. The computational processes may 
be predefined (fixed code running on fixed hardware) or open (which could include 
dynamic binding, self-modifying code, self-reconfiguring hardware, and so on). 

Following Quick et a/., we require that the computational system has a suitably 
rich complex internal dynamics. While most computational systems do indeed have 
a complex internal dynamics, this may not be "suitably rich", rather, it tends in
stead be distressingly fragile and impoverished. Engineering a suitable dynamics for 
exploiting embodiment may be non-trivial. 

The environment in which the system is embodied may be material (for exam
ple, the physical world in which a robot is situated), or virtual (for example, the 
Internet). Again, a virtual environment necessarily has some underlying physical 
(hardware) implementation, but its behaviour may be abstractable from the details 
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of the particular implementation in terms of certain logical properties only. The 
environment is required to be open, hence its behaviour cannot be captured in some 
predefined description. A physical environment is always open: the world does what 
the world does, and any model we have of it is just that: a model, that abstracts 
away from some details. A virtual environment may also be open: for example, the 
capabilities and topology of the Internet cannot be captured in some predefined 
description, but are changing and growing in unpredictable ways on a daily basis. 

The environment may be relatively passive, changing only in response to the system's 
actuation, or it may be following its own physical laws over time, so the effect of 
actuations decay or grow, or it may contain other embodied computational systems 
(a social environment), each capable of being sensed, each acting on the rest of the 
environment, and each altering its state based on what it senses. 

The embodiment is provided by the coupling between the computational system 
and its environment, and is a rich complex feedback process. Inputs to the system 
from the environment are through its sensors, and it outputs to the environment 
through its actuators. 

The effect of an actuation might be minimal, merely change the system's location 
or orientation in the environment, thereby changing what it senses. Such actuation 
is perturbing the environment in a relativistic sense only: we can choose to say that 
the actuation causes the environment to move relative to the system. 

A more fully embodied effect of the actuation is to alter the environment in some 
explicit stigmergic way, such as by making or erasing a mark, thereby transferring a 
memory burden to the environment, or by building or changing a structure. Subse
quent sensing, by this system or by other systems in the environment, may perceive 
these alterations, and thereby alter behaviours. 

If the environment adapts in some way to the embodied system's change, it needs 
to be aware of this change, unlike in the case of mere relativistic movement. For 
example, a virtual environment might allocate more resources to the region that the 
system is currently inhabiting. 

A materially embodied system is a computational system embodied in a physical 
environment; a virtually embodied system is one embodied in a virtual environment 
(that is, the terms material and virtual refer to properties of the environment, not 
of the computational system). 
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12.2 Rich dynamics 

12.2.1 Physical and virtual constraints 

Laws. A physical structure (here, either system X or environment E) labours un
der the physical constraints of the material from which it is constituted. These con
straints include such things as: basic laws of physics, from speed of light constraints 
to energy density constraints; physical properties of the material, its strength and 
resistance; natural length scales and timescales governing the dynamics and the 
attractor structure of the phase space. 

A virtual structure similarly labours under various computational constraints. The 
most obvious of these is computability. If the virtual structure in question is a 
Turing-equivalent machine, then the Church-Turing thesis states that it is limited 
to performing effectively computable functions. Some argue that this computability 
constraint applies to all physical and virtual systems; others disagree. For a good 
discussion of this point, see [Copeland 2002]. 

Questions of computability notwithstanding, the issue of computational complexity 
is crucial for virtual systems. Certain computations can be performed in principle, 
but in practice they take too long (longer than the age of the universe, say). This 
is a direct analogue of the speed of light constraint in physical systems: in principle 
any destination is reachable if one travels for long enough, but it may take an 
infeasibly long time to travel there. A class of problem whose solution time scales 
at most polynomially with the problem size is classed as efficient', one that scales 
exponentially with problem size is infeasible. It should be noted, however, that 
feasibility is a technical "worst case" measure: even if a class of problems is infeasible, 
particular instances of that problem may be relatively simple, and even if an exact 
solution is infeasible to find, a good enough approximate solution may be feasible. 
AIS are one bio-inspired approach to providing feasible approximate solutions to a 
subset of infeasible exact problems. 

Even if one has efficient computation, there are further constraints when considering 
an embodied system. The computational system is coupled with the environment, 
and the environment is acting and reacting on certain timescales, constrained by the 
relevant laws. So it behooves the computational system to act and react on appro
priately similar timescales, which puts constraints on its implementation technology. 
Speed matters. A Turing machine built from beer cans, or John Searle locked in his 
Chinese Room [Searle 1980], would not be able to constitute appropriate embodied 
intelligences with respect to our everyday environment, since they would be acting 
on glacially slow timescales, and could not engage in rich perturbatory interactions 
on our timescales. 

One of the tenets of embodiment, certainly from an artificial intelligence point of 
view, is that an embodied system transfers some of its computational burden to the 
(much larger, much richer) environment. Thus new classes of problems may become 
feasible for it to solve, and others may even disappear altogether [Kushmerick 1997]. 
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Initial conditions. Physical structures are constrained by their history and dy
namics: there may be certain physical states that, although potentially physically 
realisable, are unreachable from the system's starting state under the physical laws 
of the system. [Goodwin 1994] argues that such physical constraints and processes 
play the major role in the evolutionary and developmental dynamics of an organism, 
and that genetic variation provides a relatively small modulation to this. 

Virtual structures are similarly constrained by their initial conditions and the dy
namics of the computation. For example, it has been found, in the context of genetic 
programming, that there are some potential solutions that cannot be found by an 
evolutionary search process, given a certain class of move function [Daida et al. 
2003a, Daida et al. 2003b, Daida & Hilss 2003]. Analogous constraints are doubtless 
features of other bio-inspired algorithms, such as AIS, that develop from some ini
tial population using their own move functions, although the precise forms of these 
constraints are yet to be uncovered. 

Viability. Natural biological systems are constrained by viability: individuals must 
be viable at all stages of their life, and members of species must be viable at all 
stages of their evolutionary history. Additionally, individuals have many functions 
that are necessary simply for maintaining their life. 

Artificial systems (virtual or physical) potentially suffer fewer such constraints. They 
need not be viable until their construction is complete. Also, they often need have 
little or no functionality beyond that needed to support their primary purpose: 
any resources they need merely to "survive" are usually supplied by some external 
agency. 

As these artificial systems become more complex, however, and particularly as de
signers look to biology for inspiration, some of the constraints of natural systems 
are in turn added to artificial ones: they may be artificially evolved and grown, 
with some requirement for intermediate viability, and they may need to compete for 
resources with other artefacts. 

An AIS certainly has a competitive element to it, in that the individual elements 
within the system may compete with other such elements; the overall system, how
ever, is usually situated in a more computationally traditional non-competitive en
vironment. 

12.2.2 Natural physical richness 

As argued above, physical and virtual systems both labour under certain constraints, 
and it might therefore seem that (physical) embodiment adds nothing to the equa
tion. However, physical systems are essentially rich, whereas virtual systems tend to 
be impoverished unless specially designed for richness. It is here that the eff*ortless 
richness of physical embodiment can off*er new opportunities, and where analogous 
properties may need to be designed in to virtual embodiment. 
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Physical systems can exploit continual novelty. It is in this sense that they are rich: 
they can, and often do, use any feature of the real world to perform their task, 
not just the ones abstracted out for analysis in the mathematical or computational 
model. Physical systems can move outside the model, and evolve new representa
tions. ^^Evolution tends to produce designs that take full advantage of the available 
freedom'^ [Beer 1995]. Computational systems embodied in a physical environment 
can exploit this richness. 

The classic work that demonstrates such physical richness is [Thompson k. Layzell 
1999], who use a genetic algorithm to evolve a two-frequency discrimination al
gorithm running on an unclocked Field Programmable Gate Array. The resulting 
solution circuits perform their task, but are bizarrely inexplicable in operation. In 
particular, some solutions have unconnected components, yet if these apparently 
irrelevant components are removed, the circuit fails to operate. Also the circuits are 
not portable: they cannot be moved to other places on the chip's array, or to other 
chips, or run at different temperatures. The circuits appear to be exploiting extra-
logical properties of the chips, such as capacitances between components (even ones 
not directly connected); these properties are not controlled by design or manufacture 
to be the same in all places or at all temperatures. 

Even with a conventional digital microprocessor, such extra-logical properties can be 
important. For example, recent breakthroughs in cryptanalysis exploit extra-logical 
side-channels, for example using timing or power measurements in correlation with 
the computation being performed, in order to break the cryptographic systems. See, 
for example [Kocher 1996, Kocher et al. 1999, Clark et al. 2005b]. 

12.2.3 Achieving virtual richness 

Physical systems do not need to develop any special mechanisms to obey the laws 
of nature: they just naturally follow such laws, and can evolve to exploit these 
laws. In contrast to physical environments with their open range of extra-logical 
properties occurring "for free", most virtual environments are severely constrained 
and impoverished. Typically they are closed systems with a pre-defined finite discrete 
logical representation, and cannot move out of this (or if they do move out, it 
constitutes an error). 

The Internet/Web provides an interesting open virtual environment, in that it is 
constantly changing and growing. [Quick et al. 2000] describe Phenomorph, a system 
designed to be embodied in the open virtual environment of the Web. The system's 
sensors parse pages for keywords while its actuators select and navigate links. The 
sensory input alters the system's behaviour (in a way inspired by the locomotive 
behaviour of E. coli), which alters the actuator's choice of fink to follow, which 
affects where the system is located in the environment. 
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The work is an initial attempt to explore the question: Can a purely virtual embodied 
system (that is, a system embodied in a virtual environment) experience the same 
degree of richness as a physically embodied system? 

The answer appears to be a qualified 'yes', provided that the system and its virtual 
environment are designed to achieve a suitably complex dynamics, and that the 
environment is sufficiently open, allowing it to remain far from equilibrium. 

12,2A Suitably complex dynamics 

It is not sufficient for the system or the environment merely to have a large state 
space, or phase space: that space must also have a "suitably complex dynamics", 
that is, have a complex structure, neither too regular, not too random. The rich 
perturbatory interactions then make suitably complex changes to this structure. 

The dynamics is described in terms of the trajectory that the system follows through 
its relevant state space. This trajectory is governed by the attractor structure of the 
state space. Inputs can change the system, possibly by altering the values of param
eters describing the space, thereby altering its attractor structure, for example by 
moving at tractors, or causing at tractors to merge or bifurcate. [Beer 1995] provides 
a concise overview of the relevant dynamical systems theory. 

A dynamics is suitably complex when it results in complex em,ergent properties, 
which may be identified with attractors or with other complex structures in the dy
namics. These emergent properties are new higher level properties (patterns, agents) 
in space and time, and they have their own structure and dynamics, their own higher 
level state space, trajectories, and attractors. This higher level state space can then 
support the emergence of still higher level patterns, and so on. In an open system, 
where arbitrarily many levels of patterns can emerge, it is impossible to pre-define 
all the state space: the higher level state spaces emerge along with the patterns 
[Kauffman 2000], resulting in the potential for constant novelty. 

Some authors argue that to achieve such richness, the state space must be con
tinuous, rather than discrete: "/^ is my belief that the versatility and robustness of 
animal behavior resides in the rich dynamical possibilities of continuous state spaces" 
[Beer 1995]. However, research on Cellular Automata and other similarly "simple" 
systems shows that these discrete spaces can nevertheless have amazingly rich dy
namical possibilities. See, for example, [Gardner 1970, Langton 1991, Wuensche & 
Lesser 1992, Wolfram 1994, Wuensche 2002]. 

It is an open question whether finite discrete systems can provide a sufficient rich
ness of multiple levels of emergent structures, or whether continuous systems are 
qualitatively diff'erent. There has been much debate, and no doubt will be much 
more, on both sides of the argument. 
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Fractal proteins [Bentley 2004] provide one form of computational richness. The 
aim is to achieve the "complexity, redundancy and richness" of natural protein sys
tems, without using (or simulating) the actual real-world mechanisms. Each fractal 
protein is a triplet of real numbers that encodes a small square patch of the Man
delbrot set centred at (x, y) and with size z. The rich and diverse shapes of natural 
proteins are mirrored in the complex and diverse shapes of these patches of the Man
delbrot set. Natural protein interactions are mirrored by intersecting fractal patches 
to measure their affinity, or how closely they match. An evolutionary or other search 
process searches for sets of triplets that exhibit appropriate dynamics under such 
intersection. The aim is for a sufficiently complex artificial chemistry, provided by 
the complexity of the highly non-linear Mandelbrot set. 

Fractal proteins were originally designed to "provide a rich medium for evolution
ary computation" of artificial gene regulatory networks (GRNs) [Bentley 2004]. Al
though originally designed for GRNs, fractal proteins, or related concepts, may also 
provide a rich medium for other bio-inspired processes, including immune ones. Anti
gens are a kind of protein, and [Bentley & Timmis 2004] use "fractal antigens" in the 
context of an artificial immune network, to represent the shape space and affinity 
functions. 

The scheme works well in practice, but as used it may not be achieving its full 
potential. The search process as described [Bentley 2004] modifies the z parameter 
(patch size) by a random additive rather than multiplicative factor, making "deep 
zooming" (very small values of z) unlikely, and hence not exploiting the deep self-
similar nature of the fractal. It also uses a relatively coarse-grained sampling grid 
on the patches to calculate their affinity. However, there is no reason in principle 
why a more fine-grained approach could not be used to produce arbitrarily complex 
chemistries. 

It would be interesting to explore the effects on the generated dynamics of the precise 
choice of fractal, and even of (co-)evolving the underlying fractal itself. 

12.2.5 Far-from-equilibrium openness 

A closed dissipative system will reach equilibrium: it will converge on an attractor 
and stay there. If that attractor is a strange attractor [Lorenz 1963, Strogatz 1994], 
the system can exhibit complex-looking behaviour, but it will still be bounded, and 
in a form of "steady" state. This is why we desire the environment (at least) of our 
embodied system to be open. This openness (a constant flow of matter, energy, or 
information through the system) allows constant novelty, by allowing the combined 
system to be far from equilibrium. 

A far-from-equilibrium system, rather than converging, may self-organise [Bak 1997] 
to the computational edge of chaos [Langton 1991]. There it can form stable struc
tures, patterns, emergent properties, that persist; yet it is simultaneously "poised" 
[Kauffman 1995] in that it can readily change in response to inputs. This is what we 
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want from an adaptive learning system: the stable patterns form the memory, and 
the poised response forms the adaptation. 

A physical environment is naturally open, with its noise, unpredictability, and com
plexity. Some virtual environments (such as the Internet) are also open. How can 
we provide other virtual environments with desirable open properties? 

A source of noise, or randomness, to simulate richness is not suitable, because it 
has no underlying structure for the system to exploit (or, in the case of pseudo-
randomness, it may have the wrong kind of structure). To get at least the flavour of 
the right kind of complexity [Crutchfield 1994], an otherwise impoverished virtual 
environment could be coupled to some suitable "edge of chaos" or other complex 
non-linear device. Depending on the nature of this device, it might still be difficult 
to achieve multiple levels of emergence. But in the short term, this is a potentially 
valuable approach to the openness problem. 

12.3 Rich coupling 

12.3.1 Co-evolution of sensors/actuators and processing elements 

In addition to a suitably complex dynamics of the individual components (both 
system and environment), embodiment requires rich perturbatory channels between 
the systems. Similar to the argument about the state space, this does not merely 
mean a high bandwidth, it means a communication flow that affects the various 
dynamics in a suitably complex way. 

If we want to engineer such a system, how can we find suitable state spaces and 
communication channels in the truly vast space of possibilities? 

Species are not created with a given complement of sensors and actuators, filtering 
their interaction with their environment in fixed ways. These filters, their modalities, 
number and positioning, have evolved to suit the needs of the particular organism 
in its particular environment. Different species have different modalities (bats and 
dolphins "see" with sound; ants communicate by pheromones; certain fish and birds 
can usefully sense magnetic fields; etc), and different manipulatory appendages. 

[Chiel Sz Beer 1997] discuss this cooperative coevolutionary history. [Percus et al. 
1993] note that immune receptors and the antigens they sense have competitively 
coevolved. Kaufmann [2000] goes further, and suggests the reason why biological 
evolution works so well as a search technique in organism space is that organ
isms and evolution have themselves coevolved. Polani and co-workers [Polani et al. 
2001, Klyubin et al. 2005] use a mutual information-theoretic approach to quantify 
informational and bandwidth requirements, given particular tasks or goals, which 
might be used to help evolve suitable sensors and actuators. 
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For artificial systems, it is possible for the environment to provide a system with 
inputs (or "insults") other than through its designed sensors, such as by impact, 
heat, etc. A sufficiently flexible system may be able to adapt to exploit these inputs, 
and an adaptive environment then learn to exploit them more explicitly. Similarly, 
an adaptive environment might learn to interpret some non-designed outputs in 
a useful manner: a sufficiently flexible system may be able to learn or evolve to 
modulate those outputs. These evolutions will simultaneously adapt the system's 
state space and internal dynamics. 

So, for an artificial embodied system, it is essential to coevolve (or at the very least 
codesign) the system's computational engine along with its sensors and actuators, 
including the bandwidths and formats of the input/output data, in the context of the 
relevant environment. And ideally, for an adaptive and learning system, its sensors 
and actuators should be able to adapt as well. 

This is contrary to the classical software engineering view that interfaces need to 
be clean, well-defined, controlled, and that the low-level implementation details of 
data representations (once a standard format has been agreed) are unimportant. 

12.3.2 Co-development of system and environment 

Embodiment can affect many processes, including, for example, the rate of evolution. 
Johan Metz [private communication, 2005] says that embodied development is a 
reason why mammalian morphology evolves much faster than the morphology of, 
say, indirectly developing insects. Mammals interact with and use cues from their 
environment during their development in the womb, and so bones and muscles, for 
example, can develop in a coordinated manner according to their use. On the other 
hand indirectly developing insects develop "ballistically" in the pupa, and so have 
no such environmental cues to exploit. 

Indeed, [Riegler 2002] argues for a stronger definition of embodiment than Quick el 
a/.'s. Not only must the perturbatory interactions with the environment exist, but, 
he claims, additionally "embodiment of a system is synonymous with competence 
in its environment". He goes on to claim that this competence cannot arise by en
gineered design, but requires "historical development in synchronization with their 
environment". He allows that artefacts may be embodied in virtual environments, 
but requires them to have developed their own goals, their own competences: de
signed systems whose main goals are those of the designer are merely "embedded", 
not embodied. 

Although we do not adhere to Riegler's strong view about the source of the system 
goals, it is clear that the developmental process plays a key role in embodiment. 
Embodied systems do not spring into existence fully formed; they grow and adapt 
in an environment that, due to the close coupling, shapes, and is shaped by, that 
growth and adaptation. The same "seed", planted in two different environments, can 
develop into two quite different embodied mature forms. The growth itself is part 
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of the adaptive process of the computational system, with its complex dynamics 
changing as it grows. 

A requirement for embodied development is rather daunting for physical systems, 
but may be less so for virtual ones. Recent research on virtual developmental systems 
might hold a key: the system is encoded as a "seed", then "grown" into its final 
complex adult form. See, for example, [Prusinkiewicz & Lindenmayer 1990, Kumar 
& Bentley 2003]. This is relevant for embodiment when the system is coupled with 
the environmental during its growth [Mech Sz Prusinkiewicz 1996]. 

Such an approach may help to overcome some of Riegler's arguments against de
signed systems. The computational system is deployed as a "seed", and grown to 
maturity in its specific environment, rather than designed in an explicit fully grown 
form; the seed itself, however, may be designed. 

As a consequence, a mature embodied system cannot be simply transplanted to a 
different kind of environment. It must develop and learn in the relevant environment. 
This has been noticed in practice, for example with work on developing an AIS for 
fault prediction in Automatic Teller Machines (ATMs), where an AIS trained on 
data from an ATM in one location is ineffective when transferred to a machine in 
a different location [Ayara 2005]. Hence one will not be able to develop a virtual 
embodied system, make multiple copies of its mature form, and then deploy them 
in other environments, unless those environments are sufficiently similar. 

12.4 Design principles for embodied systems 

[Kushmerick 1997] begins a computational analysis of embodiment that could be 
used for the design and characterisation of virtual as well as physically embodied 
systems. Although his emphasis is on intelligent behaviour, some of the points are 
relevant to AIS. 

One key aspect of Kushmerick's analysis is that intelligent embodied systems (ani
mals) have a high bandwidth of high quality input from their environment. Vision, 
in particular, is a high bandwidth channel, and involves a variety of filters (such as 
gaze direction and attention) to control the data flow. This does not mean that all 
embodied systems require visual sensors: plants, for example, are embodied, but are 
not renowned for their sharp eyesight. What is important is the bandwidth on the 
relevant timescales of interaction, which is much slower for (most) plants than for 
(most) animals. 

Another aspect is that the sensory flow is continuous: it is always present and does 
not have to be requested. Once an animal has focused its visual attention on a 
part of its environment, it does not have to "request" or "poll" for its visual input; 
the channel is broadcasting continuously. [Kushmerick 1997] argues that this is an 
important part of the interaction that allows the computational and memory burden 
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to be shifted to the environment (cf Brooks' "the world is its own best model"). The 
system lives in a sea of constantly updating data, and much of the problem of 
perception is what to throw away, not what to request. 

[Kushmerick 1997] notes that the task that an embodied system has to perform is 
often more highly constrained that the general class of tasks of which it is a member, 
because of existing environmental constraints on the solution, or because the system 
itself imposes extra constraints via the coupling that reduce the number of degrees 
of freedom. Those constraints can then be exploited to simplify the computation 
needed to perform the task. (Recall that computational complexity is a worst case 
property of a class of problems, and individual instances may have much lower 
complexity.) 

Finally, [Kushmerick 1997] observes that physically embodied systems are usually 
satisfied with approximate "good enough" solutions, rather than optimal or exact 
solutions, particularly when the approximate solution can be achieved with signifi
cantly reduced computational burden. 

These observations, along with arguments discussed earlier, suggest some design 
principles for embodied systems. 

1. Design the system X with sufficiently complex dynamics, that can execute this 
dynamics on the relevant timescale(s) of the environment E. 

2. Design a sufficiently high interaction bandwidth on the relevant interaction 
timescale(s). 

3. Ensure that input from the environment is constantly available and up to date. 
4. Ensure that the system perturbs the environment, rather than being merely a 

passive observer. 
5. Ensure that the environment has sufficiently complex dynamics. 
6. Allow the system to exploit structure and constraints in the environment in 

order to simplify its tasks. 
7. Apply embodied systems only in "softer" problem domains where approximate 

solutions are appropriate and acceptable. 
8. Co-design the system and its interface (sensor and actuator numbers, positions, 

data formats, etc). 
9. Design the system to develop, "grow", in the relevant environment. 

These principles apply both to material and to virtual embodied systems, but the 
emphases and difficulties are diff'erent in each case. For example, complex dynamics 
may be easier to achieve for a physical than a virtual environment, whereas the co-
design of sensors and actuators may be easier to achieve for virtual than for physical 
interactions. 

Of course, how to design and ensure many of these things are still open research 
problems. Certain aspects of the "design" may need to be accomplished by some 
evolutionary search process. However, one point to note is that some of these design 
principles refer to the environment, not just to the computational system. This is 
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not unexpected: we noted earlier that it it impossible to analyse an embodied system 
in isolation, and so it is impossible to design it in isolation. (In chapter 16 of this 
book, Hone and Van Den Burg analyse an isolated AIS. This does not contradict 
the claim here, since their AIS is not embodied: it does not have rich perturbatory 
interactions with its environment.) 

12.5 Embodiment in the natural immune system 

12.5.1 Instantiating the model of embodiment 

Let us now consider the natural immune system as an embodied computational 
system. (The following discussion is necessarily a gross simplification of the actual 
biological processes, omitting many constituent agents and processes, but is sufficient 
to illuminate the key concepts.) We instantiate the generic embodied system of 
figure 12.1 with immune system concepts (figure 12.2). 

... embodied in... 

immune system, 
antibodies,... 

analogue + digital 
open 

material 
open 

Fig. 12.2. A computational immune system embodied in an environment 

The immune system contains, among other things, a population of antibodies, which 
are particular kinds of proteins. The system is hybrid: partially digital (proteins are 
strings of amino acids drawn from a small alphabet of possibilities, partly coded for in 
the DNA) and partially analogue (the proteins fold into complex three-dimensional 
shapes whose physical properties determine their behaviour). The system dynamics 
includes the modification of the population by the production, modification, and 
destruction of different kinds of antibodies, in response to events sensed in the 
environment. See, for example, [Nowak k. May 2000]. 

The environment is the open material environment of the body, taken here as con
taining the antigens to be handled, and self proteins that should not be attacked. 
The environment is modified by the immune system, and some of its components 
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evolve to resist this modification, some to aid it. It is open in that there is a flow of 
matter through it. 

The interaction between the system and the environment occurs by antibodies bind
ing to antigens. This binding depends on shape recognition (hydrogen bonds form be
tween the molecules; if the shapes are sufficiently complementary, enough hydrogen 
bonds can be created to form a strong enough aggregate bond to stick the molecules 
together), and other environmental factors (for example, water molecules can plug 
gaps between the shapes and form additional hydrogen bonds). The stronger the 
bond, the higher the affinity the antibody has for the antigen. 

12.5.2 Danger Theory as embodied sensing 

There may be hierarchies of embodiment. Here we have described the immune system 
as being comprised of its cells, with the host organism and pathogens acting as 
its environment. The host organism itself is also a system, embodied in its own 
environment. We could instead consider the immune cells to be embodied in their 
host, with the pathogens acting as an external environment, much in the way a robot 
controller is considered to be embodied in the physical robot host, in the environment 
of the world. However, in our case, such a choice would beg the question of precisely 
what comprises the host organism, and what comprises the pathogenic environment. 

There are several theories, all more or less contentious, of how the natural im
mune system determines what of its environment is host organism, and what are 
the pathogens. These range from externally directed self-non-self learning, to fully 
autopoietic ideas of self-assertion (summarised in [Bersini 2002]). 

Danger Theory [Matzinger 1994a, Matzinger 2002] sits towards the middle of this 
spectrum, and says that the immune system reacts to danger, or rather, to damage, 
by reacting to certain chemicals given off" by distressed cells. When it senses such a 
"danger signal", it reacts by associating "nearby" cells with the danger, and so they 
are classified as the cause of the problem, in a form of "guilt by association". Danger 
Theory helps to explain why an adjuvant (essentially, a poison) is a necessary part 
of some vaccines: it causes the required damage. 

In Danger Theory, the immune system has cells with sensors that detect danger 
signal chemicals: specific chemicals given out by damaged or killed host organism 
cells. It also has sensors to detect nearby cells, and a system dynamics that correlates 
the inputs from these sensors. Additionally, it has actuators (further cells) that then 
respond to (kill) these associated cells, whether or not they subsequently occur in 
proximity to any danger signal. 

Under this theory, the immune system has evolved its internal computational dy
namics and its sensors to respond to danger signals. One can also postulate that the 
host organism part of the environment may have coevolved to enhance these signals, 
and that the pathogens have coevolved to evade the associated recognition, provid-
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ing the environment with its own complex dynamics. Thus we see the evolution of 
a rich embodied computational system. 

Ideas from Danger Theory are now being incorporated in AIS models. See, for ex
ample, [Bentley et al. 2005, Greensmith et al. 2005] 

12.5.3 Shape space in the natural immune system 

As noted earlier, the interaction between the immune system and its environment 
is in terms of shape recognition. 

[Perelson & Oster 1979] introduce the concept of an abstract shape space, 5 , in 
which the shape of an object is represented by a single point. They take S to be an 
iV-dimensional Euclidean vector space, S = ^^. They use the N shape parameters 
as a model of the relevant features of an antibody combining region, and represent 
these values by a point A b in S. They do not identify these parameters further, 
beyond suggesting that they could be physical properties such as size, charge, and 
dipole moment. [Lapedes 8z Farber 2001] use multidimensional scaling techniques to 
derive further geometrical properties of shape space from influenza data. 

[Perelson & Oster 1979] then capture how well an antibody combining region A b 
and antigen Ag fit together in terms of the distance between the shape of the 
antibody and the complementary shape of the antigen, | |Ab, Ag|| , measured using 
an "appropriate" metric on S. A small distance represents a good fit, and hence a 
high affinity. They explicitly decline to define this metric, its being "a complicated 
chemical problem", and continue their analysis in terms of the well-known Euclidean 
metric. (See appendix A for some other possibilities.) 

What is the distribution of antibodies and antigens in this shape space? Perelson and 
Oster note that it is almost certainly not random, since the components will have 
been subject to negative selection (in order not to recognise self) and evolutionary 
selection respectively. It is presumably also aflfected by the physical constraints of 
embodiment: certain combinations of parameters may be physically impossible, or 
at least highly unlikely, to be realised. 

Since nothing is known of the actual distribution, analyses tend to proceed on the 
minimal assumption of random distributions within some finite volume V C S (or 
are parameterised by the actual, but unknown, distribution). Perelson and Oster 
analyse the size of the antibody repertoire needed to cover this volume, in terms 
of a recognition specificity i and of the dimensionality N. Their analysis shows 
that higher values of N need significantly larger antibody repertoires to cover a 
given volume of shape space, for a given specificity. They argue that this is why 
recognition uses only a small portion of each antigen, to limit the complexity, and 
hence to limit N and the required size of the repertoire. For typical animals, they 
estimate that A/" = 5 — 10. 
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Using different techniques, [Lapedes &: Farber 2001] recover N = 5 from various 
influenza data. [Smith et al. 1997] find that N = 5 — S is consistent with their data; 
using a Hamming metric (see appendix A) instead of a Euchdean metric, they find 
AT = 20 — 25, for an alphabet of size 3 — 4, is consistent with their data. 

[Perelson & Oster 1979] define their recognition specificity i as the radius of an N-
sphere centred on A b in S, scaled by the radius R of the full AT-sphere of volume V, 
making it a non-dimensional quantity with 0 < f < 1. The number of such spheres 
needed to fill V goes like 1/e^. Keeping i fixed whilst varying N corresponds to 
a keeping a fixed specificity along each individual dimension whilst changing the 
number of dimensions. This form of scaling is (most of) the reason for the dependence 
of repertoire size on AT: if one fixes specificity along each dimension whilst increasing 
AT, the number of antibodies in the repertoire needed to cover the space increases. 

One can look at this argument from another perspective. Consider a fixed repertoire 
size l/i^; then as N increases, i also increases. For example, for a repertoire size 
of 64, then N = 1 has i = 1/64; N = 2 has i = 1/8; N = 3 has i = 1/4; and 
N = 6 has i = 1/2. So, for a fixed repertoire size, one can trade off specificity 
against dimension: a larger N requires less precise discriminations along each of its 
individual dimensions, which might be easier to realise. 

Shape space is an essentially physically embodied notion, as further demonstrated 
by the following quotations from [Perelson Sz Oster 1979] (our italics): 

multisite recognition is a more reliable method of distinguishing between 
molecules than single site recognition. This may have been an important 
evolutionary consideration in the selection of weak non-covalent interactions 
as the basis of antigen-antibody bonds. 

. . . a large repertoire of antibody molecules with different three-dimensional 
binding sites specific for the different chemical groups . . . found on antigen 
molecules. 

because of physical restrictions on the manner in which molecules fold, 
smaller regions can take on fewer shapes 

Shape space as originally envisaged is a metric space, where the only property of 
interest is the distance between pairs of points in the space. Spaces with more 
structure, with a value at each point (for example a scalar value that might represent 
a fitness, or a vector value that might represent a force), are also of potential interest 
for modelling the interaction between a system and its environment. Entities can 
then have a dynamics, can move around in these spaces, affected by the values at 
various points. The values in turn can be affected by how things move, and thus 
provide even richer dynamics [Saunders 1993]. In Chapter 4, Lee and Perelson discuss 
further models of affinity, and their dynamics. 

C o m p l e m e n t a r i t y revis i ted . Care needs to be taken with the various forms of 
complementarity used in different shape space arguments. The idea is that com-
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plementary shapes match well. However, the complementarity may be included at 
different points in the argument, resulting in different interpretations of the metric. 

The original shape space arguments [Perelson &: Oster 1979] consider a specificity 
"ball" around an antibody, with this ball containing the antigens recognised. The 
antigens are located in the shape space according to the complement of their shape. 
The Euclidean metric measures how well antigen and antibody match, where small 
values correspond to good matches, that is, to high affinity. So in this case, high 
affinity corresponds to small values of | |Ab,Ag||£;. [De Boer et al. 1992] take a 
slightly different interpretation: shapes have good matches in shape space when 
their coordinates are ^^equal and opposite'^ (thus putting an explicit interpretation 
on complementarity), so high affinity corresponds to small values of | |Ab, — AgH^;. 

The "lock and key" metaphor [Percus et al. 1993] has a more direct measure of 
complementary shapes matching well. Here r-contiguous bits (which measures com
plementary contiguous subsequences) is used, and high values correspond to good 
matches. So high affinity corresponds to large values of | |Ab, Ag| |c-

In practice, it is common for artificial immune system researchers to neglect comple
mentarity when using real-valued artificial shape spaces, and instead measure direct 
matching, and use a large (or sometimes, small) value of | |Ab, AgH^; to represent a 
high affinity. 

Discussions of the role of complementarity and metrics in the context of artificial 
immune systems can be found in [Garrett 2003, Hart & Ross 2005]. It is clear that 
great care should be taken in choosing, and precisely documenting, what measure 
of matching is being used. 

12.6 Embodied artificial immune systems 

Engineered embodied systems must have their own suitably complex internal dy
namics and complex perturbatory interactions with a suitably complex open envi
ronment. This is a potentially enormous class of systems, and so we seek inspiration 
from existing natural systems to help us to constrain our design space. 

As discussed in Chapter 3, Artificial immune systems (AIS) are computational sys
tems that take their inspiration from various theories of the natural immune system. 
However, research has tended to concentrate more on the complex internal dynamics 
than on the complex perturbatory interactions, and the systems are often situated 
in a closed and impoverished virtual environment: AIS tend not to be embodied. Let 
us look at the design principles suggested earlier, to see how they might be used to 
achieve (materially or virtually) embodied AIS. 

Timescales . Physically embodied systems usually interact on "human" timescales 
(seconds, hours, days), whereas virtual systems may have to react much faster. 
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There may be more than one relevant timescale, for example, for immediate reaction 
to a novel situation, and for slower adaptation/learning of that novelty. One of 
the reasons that AIS have not managed to act as fully effective "immune system" 
defences against computer viruses may be that, although the analogy holds between 
the two sets of terminologies, it does not hold between timescales. A computer virus 
can destroy an entire network on the same timescale that the defences react. 

Bandwidth. A physical environment naturally offers high bandwidth, so the AIS 
merely needs to be supplied with sensors and actuators to access the relevant portion 
of it. A virtual environment may need to be adapted to provide a richer source 
of data: not simply, say, packet headers, process ids, or return codes, but more 
contentful information. This may pose a problem on, say, a network where all traffic 
is encrypted. It is worth considering if "side channel" information (such as timing, 
power consumption, etc [Kocher 1996, Kocher et al. 1999, Clark et al. 2005b]) are 
also available, as these provide rich extra-logical resources. 

Constantly available up-to-date input. The AIS should be able to directly sense 
the relevant data streams, rather than explicitly request data. The requirement to 
be up to date might imply that virtual data streams have limited temporal and 
spatial extent, so that they "decay" before they have become outdated. 

Actuation. An embodied system perturbs its environment: it takes actions based 
on what it senses, and these actions in turn change the environment. The AIS must 
interact, and be able to change aspects of the environment (for example, by injecting 
packets into relevant data streams). Thus purely passive recognisers or monitors (the 
major application areas of AIS to date) cannot be considered to be embodied. 

Sufficiently complex environmental dynamics . This should be a "given" for 
truly physical embodiment. However, in some cases the physical world may instead 
be severely impoverished, by design. For example, many robot control experiments 
take place in sterile featureless mazes that offer few environmental cues. These are 
not appropriate environments for embodiment. 

A virtual environment may have to be designed explicitly to have sufficiently com
plex dynamics; this may be simulated by artificially hooking up the environment 
to an edge of chaos generator. "Sufficient" complexity allows the actuations of the 
system to affect the dynamics of the environment in complex ways. 

Environmental structure and constraints. Exploiting these requires an under
standing of the constraints (for example, restricted network topology resulting in 
restricted navigational opportunities) and their effects, and how they might change 
over time. 

Approximate solutions. In most physically embodied cases, approximate solu
tions are acceptable, because the system is interfacing with the continuous, analogue 
real world, and there is always limited precision. The acceptable degree of approx
imation still needs to be ascertained. In the virtual world, crisp digital problems 
are not appropriate: this excludes many classical computer domains, from word pro-
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cessing to payroll systems. Even for softer domains such as pattern recognition, it 
requires consideration of the acceptable false positive and false negative rates. 

Co-design the system with its sensors and actuators. Natural immune sys
tems interact with the environment by shape recognition and binding, modelled by 
shape space. The analogue for AIS is an artificial shape space (sensing affinities), 
and artificial binding (actuation). 

Relatively simple shape space arguments show how the choice of geometrical param
eters such as representation dimensionality, alphabet size, and specificity, determine 
the antibody repertoire size needed to cover shape space. This is a crucial design 
consideration for artificial immune systems. Evolution appears to have settled on 
a value of Â  ~ 5 for real immune system shape space. Design choices include the 
actual dimensionality AT, what each axis of dimension represents, the metric used to 
measure affinity distance, and the specificity e. 

The data representation also matters. For example, interpreting a 6-bit string as rep
resenting a low dimensionality, large alphabet system, rather than as a 6-dimensional 
binary hypercube, results in smoother measures [Smith ei al. 1997], which may be 
beneficial to the behaviour of the system. It may be that the use of complementarity 
and the choice of metric (or non-metric distance measure, see appendix) have subtle 
effects on the underlying dynamics of the system [Hart & Ross 2005], and so should 
be designed into artificial systems with care. 

Grow t h e sys tem in the relevant environment. Essentially this afi'ects the initial 
conditions of the system. A system should start as small as possible (maybe from 
an embryonic or an infant state), and develop in the context of its environment, 
learning and adapting as it goes. It should not merely accrete: the dynamics of 
its growth should be complex, and aff'ected by the environmental inputs. It should 
be a continually developing system. This implies that the system should undergo 
continual online learning, and not be a system that has an initial learning phase, 
then a frozen deployment phase. 

12.7 Conclusions 

Embodiment offers substantial advantages in allowing a computational system to 
offload much of its computational burden to the surrounding rich environment. This 
advantage comes at a price, however, as the design of such a system is non-trivial. 

Despite embodiment seeming to require a physical body, many of the advantages can 
also be achieved in systems embodied in a virtual environment, provided that the 
design of both system and environment supports the rich dynamics and interactions 
necessary. 
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Current artificial immune systems tend not to have the properties necessary for 
embodiment. Several design principles for embodied systems have been abstracted, 
and their application to potential embodied artificial immune systems explored. 
The next step is to attempt to build some fully embodied artificial immune systems 
according to these principles. 

A Metrics 

A metric is the mathematical abstraction of the intuitive concept of distance. It 
is a function that maps pairs of points x^ y m a space 5 to a real number, the 
"distance" between them: \\x,y\\ G ^. To qualify as a metric, the function must 
obey the following properties. 

1. distances are not negative: Wx,y : S • \\x,y\\ > 0 
2. the distance from a point to itself is zero; the distance between different points 

is not zero: Vo;, y : S • \\x, y\\ = 0 <=> x = y 
3. distance is symmetric (the distance from x to ?/ is the same as the distance from 

y t o x ) : yx,y : 5 » \\x,y\\ = \\y,x\\ 
4. distance obeys the triangle inequality (detours are further than direct routes): 

yx,y,z:S*\\x,y\\ + \\y,z\\ > \\x,z\\ 

Give a prospective metric, usually the first three properties are immediate from the 
definition and only the triangle inequality property needs further demonstration. 

There are many metrics; we consider here those most often used in the AIS literature. 
In what follows, we take the points in space to be vectors x in the AT-dimensional 
shape space of an antibody A b or antigen Ag. A vector x can be written in terms of 
its components Xi, with x = ^i-i ^i^i, where the e^ are a basis set of orthonormal 
vectors. 

The Euclidean metric, favoured by mathematicians because of its nice analytical 
properties, is 

l|x,y||^: 
\ 

J2 i^i - vif 

For example, ||3ei,4e2||£; = ^^(3 - 0)^ + (0 - Af == 5 

The Manhattan metric, favoured by computer scientists because it is simple and 
cheap to compute, is 
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l|x,y||M = ^\xi-yi\ 

For example, ||3ei,4e2||M = |3 - 0| -h |0 - 4| = 7 

The Hamming metric is even simpler. Let the components of x be drawn from 
some finite alphabet Z" (so x 6 I^^ rather than x G ^^). Then 

N 

where S{x, y) = if x = y then 0 else 1 

So, for example, || 120001,0200201|// = 1 + 0 + 0 + 0 + 1 + 1 = 3. For binary alphabets 
(that is. Boolean vectors), the Hamming metric is the total number of complemen
tary bits, and is the same value as the Manhattan metric over the iV-dimensional 
hypercube. 

The r-contiguous bits distance [Percus et al. 1993] is also applicable to Boolean 
vectors. It measures the longest contiguous subsequence of complementary bits. The 
definition, expressed in the Z mathematical language [Spivey 1992, Valentine et al 
2004], is as follows. Let s be the sequence of vector components of x — y, that is, 
s = {\xi — 2/i|, • • . , \XN — yN\)' So, for complementary bits. 

||x, y\\c = max { t : seq{l} 11 infix s •i^t} 

Consider the distance ||110001,010010||c. The sequence s = (1,0,0,0,1,1). So 
| | 1 1 0 0 0 1 , 0 1 0 0 1 0 | | c - m a x { # ( l ) , # ( ) , # ( l , l ) } - m a x { l , 0 , 2 } = : 2 . 

[Percus et al. 1993] motivate this choice of distance in terms of the immunological lock 
and key metaphor, that the Is and Os of each bit string are modelling the relevant ups 
and downs of the key teeth and complementary lock shape, and that a contiguous 
run is needed to generate sufficient affinity. They also allow the shape space vectors 
to have non-Boolean-valued components (they find evidence for a trinary alphabet 
of values in natural immune systems, corresponding to positively, negatively, and 
neutrally charged regions), with matching being all (for complementary values) or 
nothing. 

Formalising this, each vector component is drawn from some alphabet XJ. Each 
element a ^ E has a complement a £ E. An element may be self comple
mentary, f = T. Complementarity is a symmetric relation: a = r <=> f = a. 
Now define the sequence of components as s = {S{xi,yi),... ,6{xN,yN)) where 
S{x,y) = \iy = X then 1 else 0. Then r-contiguous bits is as defined earlier, using 
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this s. For example, consider the alphabet U = {+, —,0} with complementarity re
lation + = —,0 = 0. Now consider ||—|-000+,4-+H—0—||c, which has the sequence 
s= (1,0,0,0,1,1), and so | |—fOOO+,+++-0- | | c = 2. 

It should be noted that r-contiguous bits does not form a metric (the notation 
we use above notwithstanding). To see this, consider the binary vectors x = 0000; 
y = 1010; z = 1111. If we consider the usual complementarity relation, 0 = 1, we 
have that ||x, y | |c + ||y, z| |c = 1 + 1 < 4 = ||x, z | |c , which does not obey the triangle 
inequality. If we take the self-complementarity relation, 0 = 0,1 = 1, then we have 
| |x,x | |c = 47«^0, which violates another of the metric conditions. 
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Summary. The immune response occurs over multiple temporal and spatial scales. 
Events at the genetic level can influence events at the cellular level and finally 
manifest at the population scale. Through the example of the human pathogen 
Mycobacterim tuberculosis we explore immune response events over multiple scales 
and how bridging these scales may ultimately lead to the greatest picture of how 
this complex system works. 

13.1 Introduction 

When a pathogen invades a host, the host mounts a response that occurs at several 
levels of biological organization including genetic, molecular, cellular, tissue and sys
tem level. A number of host cells are called into action including antigen presenting 
cells (APCs) and T cells. At the body's peripheral sites, populations of resident 
APCs are maintained consisting primarily of macrophage and dendritic cells (DCs). 
These cells are among the first to encounter pathogens that breach host barriers. 
Foremost among their responsibilities is the presentation of peptide antigens from 
pathogens that are taken up at the site of infection in the form of peptide-MHC 
(pMHC) complexes on their cell surface. Some APCs, namely DCs, migrate to the 
nearest lymph node (LN) where they activate naYve T cells. Other APCs, namely 
macrophages, remain at the site of the infection and respond to an influx of activated 
CD4'^ T cells by increasing their presentation and microbicidal activity. 

While most of these events occur at the cellular level, they are embedded in the con
text of multiple biological levels. The initial APC-T cell interaction occurs mainly in 
the specialized structured environment of the LN. The lymphatic system serves as a 
conduit for immune cells between tissues, LNs and organs. While the blood supplies 
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immune cells to the LNs, the lymphatics drain the tissues, acting as the key source 
of antigens and DCs in most infections. Hence, both tissue- and system-level events 
play a role in response efficacy. At the same time, APCs may vary in their ability to 
perform antigen presentation due to events occurring at the molecular and genetic 
levels. The APC-T cell interaction depends on stable expression of pMHC complexes 
on the APC surface that in turn depends on pMHC binding affinity. A high degree of 
variability exists in the peptide-binding region of MHC throughout the human pop
ulation, resulting in considerable APC heterogeneity, both within a single individual 
and between individuals. Antigen presentation therefore lies at the crux of the im
mune response, between the larger scales (tissue- and system-level) that determine 
its context and the small scales (genetic- and molecular-levels) that determine its 
constituents. In fact, susceptibility and resistance to some diseases have been linked 
directly to the basic genetic components underlying antigen presentation. 

Certainly there has been a wealth of basic science performed at the molecular and 
cellular levels attempting to elucidate immunity. However, given its complexity, the 
multi-scale system is presently impossible to study in an experimental setting. Thus, 
mathematical and computational models bridging the multiple scales that encom
pass the immune response are necessary to help uncover mechanisms underlying the 
dynamics of this complex system. 

Mathematical models of the host-pathogen interaction have mainly been restricted 
to the study of host-viral interactions. Relatively few models have explored bacterial-
host interactions [Freter et al. 1983, Kirschner & Blaser 1995, Asachenkov 1994, 
Gordon & Riley 1992, Lipsitch & Levin 1997]. Regardless, most have focused on the 
single-scale of cellular-level dynamics. 

We have made attempts to explore the complex system of immunity by studying 
the immune response to a specific pathogen. We have studied the interaction of 
the immune system with the intracellular pathogen Mycobacterium tuberculosis at 
a number of biological and spatial scales. Here we highlight both the biology we are 
addressing and the mathematical approach taken as a means for beginning to un
derstand the integrated, multi-scale complex system know as the immune response. 

13.2 M. tuberculosis 

Tuberculosis (TB) has been a leading cause of death in the world for centuries. 
Today it remains the number one cause of death by infectious disease world wide 
- 2 million deaths per year. TB is not only one of our oldest microbial enemies, 
but it remains one of the most formidable: An estimated one third of the world 
population has latent TB—2 billion people. Thus, there is a great need to elucidate 
the mechanisms of TB disease progression. There are 2 major infection outcomes for 
TB-latency and active disease; the ability to clear TB has not been demonstrated, 
although only a subset (~30%) become initially infected upon exposure [Styblo et 
al. 1969] suggesting some (perhaps most) are able to clear upon initial infection. 
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Reactivation can occur in latent infection, although we do not discuss this here 
for brevity (see [Singer &; Kirschner 2004] for more information). Key issues are to 
understand immune mechanisms involved in controlling infection leading to latency. 
To this end, elaborating the primary immune response against the causative agent, 
M. tuberculosis (Mtb), is essential to understanding the functional immune response 
that leads to latency. 

Primary infection usually develops in the alveoli of the lung after inhaling droplets 
containing Mtb. The bacteria are then ingested by resident alveolar macrophages and 
begin to multiply [Canetti 1955]. These macrophages are poor at destroying their 
occupants in part because Mtb can prevent phagosome-lysosome fusion in resting 
macrophages [Myrvik et al. 1984, McDonough et al. 1993]. Infected macrophages 
may burst due to the large number of multiplying bacteria within. Infected dendritic 
cells or macrophages circulate out through the lymphatic ducts to the draining 
lymph nodes where the specific immune response is initiated. Here, CD4+ T cells 
are stimulated to become effector cells, most likely of the Thl type. These and 
other effector cells such as CD8+ T cells and monocytes must then be recruited and 
migrate to the site of infection, interact with cells at the site, where they participate 
in the formation and function of a unique immunological structure known as a 
granuloma. 

Granuloma formation is dependent on a number of factors, including chemokines, 
cytokines, cell adhesion molecules and immune effector cells. There exists a large 
body of literature regarding these individual elements in the immune response in 
TB; however, little is known about the interaction among these elements that leads 
to granuloma formation and function. Characterization of the immunologic factors 
operating during granuloma formation is likely to shed light on our understanding 
of host defense and pathogenetic mechanisms involved in TB. This is a daunting 
task as infection with Mtb triggers production of a complex set of immunologic 
factors, including potent pro- and anti-inflammatory cytokines and chemokines that 
are capable of interacting with and cross-regulating one another. These analyses 
are further complicated by the fact that many of the participating members of 
the tuberculosis immune network possess pleiotropic and often opposing functions. 
Mathematical models provide a framework for integration of large amounts of data 
into a complex system that can then be analyzed, and thus is currently the only 
integrative approach for studying complex biological systems. 

13.2.1 Immune cells participating in the immune response to M, 
tuberculosis 

Macrophages are the preferred host cell for mycobacteria. These phagocytic cells 
take up M. tuberculosis and are unable to clear it as they normal do most other bac
teria. However, if the macrophage receives appropriate cellular and cytokine signals 
(such as IFN-7) within an efficient amount of time, then these macrophages can be
come activated and clear their intracellular load [Nathan et al 1983, Flesch & Kauf-
mann 1990]. Otherwise, macrophages become chronically infected and will not only 
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never be able to clear their intracellular bacteria [Armstrong &: Hart 1971, Sturgill-
Koszycki et al. 1994], but will eventually burst due to increasing bacterial numbers 
or be killed by cytotoxic T cells [Lewinsohn et al. 1998, Tan et al. 1997]. 

It is well established that cell-mediated immunity is essential for controlling initial as 
well as latent Mtb infection both in humans and murine models. CD4+ and CD8+ 
T cells are beheved to be important in this response [Chan &; Kaufmann 1995]. 
Support for the importance of CD4+ T cells comes from the extreme susceptibility 
of HIV4- subjects to acute and reactive TB. Mice deficient in CD4+ T cells succumb 
to fatal TB [Leveton et al. 1989, Muller et al. 1987, Tascon et al. 1998, Caruso 
et al. 1999]. CD4+ T cells produce cytokines, such as IFN-7, and thus activate 
macrophages to eliminate intracellular Mtb [Caruso et al. 1999, Silver et al. 1998]. 
This is partially mediated, in mice and possibly in humans, by the production of 
reactive nitrogen intermediates, such as nitric oxide, produced by inducible nitric 
oxide synthase (N0S2) within macrophages [Chan 1993]. Mice deficient in CD8+ T 
cells are more susceptible to Mtb than are wild type mice [Flynn et al. 1992]. CD8-I-
T cells in the lungs of infected mice can produce cytokines and act as cytotoxic T cells 
(CTL) for infected macrophages [Dolin et al. 1994, Serbina & Flynn 1999, Serbina et 
al. 2000]. Mtb-specific human CD8+ T cells from tuberculosis patients have recently 
been reported (reviewed in [Flynn &; Ernst 2000]. 

13.2.2 Cytokines Involved in the Response to M, tuberculosis 

An essential cytokine in control of infection is IFN-7; mice deficient in this gene 
are extremely susceptible to acute TB [Flynn et al. 1993, Cooper et al. 1993]. A 
consequence of the absence of IFN-7 is the lack of macrophage activation, including 
N0S2 production [Flynn et al. 1993, Cooper et al. 1993, Dalton et al. 1993]. IL-12 
is also required for control of acute TB [Cooper et al. 1997b, Cooper et al. 1997a]. 
Human studies have demonstrated that mutations in genes for IFN-7 and IL-12 
receptors increase susceptibility to mycobacterial infections [Ottenhoff et al. 1998]. 
TNF is also essential to control of both acute and chronic Mtb infection [Flynn 1995, 
Adams et al. 1995, Mohan et al. 2001, Bean et al. 1999]. This cytokine has effects on 
chemokine and adhesion molecule expression and therefore is an apparent key player 
in granuloma formation [Flynn 1995, Bean et al. 1999, Kindler 1989, Mohan et al. 
2001]. Recently, TNF has shown to be an important cytokine in human studies (with 
anti-TNF treatment for arthritis), which have induced reactivation of TB [Ehlers 
2003, van Deventer 2001, van Deventer 2002], as well as in mouse systems were TNF 
knock-out mice were highly susceptible to active TB [Mohan et al. 2001, Botha & 
Ryffel2003]. 

13.2.3 Chemokines Involved in the Response to M, tuberculosis 

A successful host inflammatory response to invading microbes requires precise co
ordination of myriad immunologic elements. An important first step is to recruit 
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intravascular immune cells to the proximity of the extravascular location of infec
tion, preparing them for the process of extravasation. This is controlled by adhe
sion molecules and chemokines. The field of chemokine research is expanding at 
a rapid rate. These molecules induce migration of various cells, including mono
cytes/macrophages, dendritic cells, neutrophils and leukocytes [Baggiolini 1998]. 
The migration of cells occurs as a result of the integration of various chemokine sig
nals and their receptors [Foxman et al. 1997]. There is evidence that cytokines play 
both direct and indirect roles in modulating this process [Lane et al 1999, Czermak 
et al. 1999, Crippen et al. 1998, Koyama et al. 1999]. Chemokines in Mtb infection 
have been investigated to a limited extent [Orme 1999a, Orme & Cooper 1999, Orme 
1999b, Orme 1999c]. We begin to elucidate the role of chemokines in our models of 
the immune response to Mtb. 

13.3 In Silico Models at Different Biological Scales 

Our goal is to illustrate the application of mathematical modeling at different bi
ological scales towards better understanding the immune response to Mtb. To this 
end, we present 4 distinct models. First, we study the role of antigen presentation 
at the intracellular level exploring processing and genetic events that are interfered 
with by M. tuberculosis to its favor. Second, we bridge two distinct biological scales: 
genetic level, immune system events that impact the epidemiology of TB. Next, we 
explore the immune response to M. tuberculosis using a two-pronged approach. We 
developed a temporal model tracking a spatially homogenous population of cells and 
cytokines in the lungs. This model was designed with ordinary differential equations. 
And lastly, we then narrowed the spatial scale to a single granuloma forming and 
accounted for the heterogeneous spatialization and behavior of cells on an individual 
level using an agent-based model. 

13.3.1 Antigen Presentation and its role in M. tuberculosis 
Infection 

Antigen presentation is critical to triggering an appropriate immune response. It 
is the process whereby peptide fragments of proteins derived from pathogens are 
presented on an immune cell surface signaling the presence of infection. This process 
occurs via two pathways. All cells of the body (except red blood cells) have the ability 
to process and present antigens that are derived from the cytosol. This allows for 
cells to signal they are infected to the immune response for clearance. This process 
occurs via the MHC class I presentation pathway. Other cells, termed professional 
antigen presenting cells, or APCs, present antigen to immune cells for activation via 
the MHC class II pathway. It is this route of presentation that we focus on here. 

Briefly, specialized APCs, dendritic cells and macrophages, take up pathogens 
or other factors produced by pathogens at the site of infection. Once taken up, 
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pathogens are sequestered into vacuoles and their proteins are processed into pep
tides. These peptides are bound by MHC class II (MHC II) molecules, named for 
the region of the genome in which they are encoded, the major histocompatibility 
complex. Within this region lie the most polymorphic genes in the human genome, 
giving rise to MHC molecules with different peptide-binding specificities. Peptide-
MHC complexes (pMHC) are displayed on the surface of the APC and are recognized 
by the T cell receptor on T helper cells that become activated and proliferate in re
sponse For a complete treatment of T cell receptors, see Chapter 4 by Lee and 
Perelson in this book. 

13.3.2 A Model for MHC class II Antigen Presentation During 
Infection with M, tuberculosis 

While MHC II polymorphism may be the strongest genetic determinant of an anti
gen presentation outcome due to its effect on pMHC binding, this is by no means 
the only regulated step. Several critical cellular processes contribute to successful 
antigen presentation by APCs. These processes occur in the time frame of minutes 
to hours and can be stated briefly as: (1) uptake of antigen from the extracellu
lar environment and degradation of antigen within endosomal compartments into 
peptides, (2) synthesis of MHC II molecules, (3) peptide-MHC II binding to form 
pMHC complexes, and (4) display of pMHC complexes on the APC surface. We 
review these briefly below, but for a full treatment we refer the reader to a recent 
review [Bryant & Ploegh 2004]. 

Exogenous antigens, constituting the bulk source of peptides for MHC II-mediated 
antigen presentation, generally have three routes of entry to the APC: fluid-phase 
pinocytosis, receptor-mediated endocytosis, and phagocytosis [Lanzavecchia 1996]. 
Pinocytosis is a common mode of entry and is our focus. Once taken up, antigens 
move through a series of increasingly acidified endosomal compartments and are 
either processed into peptides capable of binding MHC II molecules or degraded. 
Low pH-activated proteases degrade antigen as it traffics through the endocytic 
pathway, yielding peptides suitable for binding MHC II [Honey & Rudensky 2003]. 

MHC II expression is normally low in resident populations of APC that have not 
been exposed to antigen. However, a number of environmental cues can alter MHC 
II expression including chemical signals (cytokines) secreted by neighboring cells 
and direct contact with certain molecules native to pathogens. Such signals trigger 
a signal transduction cascade in the APC resulting in the up-regulation (or, in 
a few cases, down-regulation) of MHC II expression. For example, macrophages 
are often incubated with IFN-7 for in vitro studies; in the in vivo situation, this 
would come from T cells or natural killer cells. IFN-7 binds to receptors on the 
macrophage surface, increasing the expression of class II transactivator (CIITA), a 
master regulator of MHC II transcription, over a period of hours, leading after a time 
delay to increased MHC II expression and presumably increased ability to present 
antigen. Describing the eff"ects of IFN-7 requires consideration of the degradation 
of IFN-7 in solution and the uptake of IFN-7 by macrophages [Celada & Schreiber 
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1997]. Shortly after appearing in the endoplasmic reticulum, a nascent MHC II 
molecule is coupled to invariant chain (li) which possesses a cytosolic domain capable 
of directing the molecule to the endosomal pathway and an extracytosolic domain 
capable of binding and protecting the MHC II binding groove. 

The MHC II molecule arrives in the endosomal pathway with its binding groove 
still loaded with a remnant of li, the class II invariant chain-derived peptide (CLIP). 
Removal of CLIP occurs in an endosomal compartment, the MHC, that also contains 
antigenic peptides and is catalyzed by the MHC-related enzyme HLA-DM [Denzin 
&; Cresswell 195]. Self peptides derived from the body's own proteins are also present 
within the MHC and compete with antigenic peptides for binding to MHC II [Adorini 
et al. 1988]. Indeed, in the absence of exogenous antigen self peptides may bind 80% 
or more of the available MHC II molecules [Chicz et al. 1993]. Once a pMHC complex 
is formed, whether it involves antigenic or self peptide, it is transported to the cell 
surface where it can be recognized by CD4"^ T cells for a period of time until it is 
either degraded or internalized. These processes appear largely unaffected by IFN-7 
in contrast to MHC II expression [Boehm et al. 1997]. 

DCs and macrophages represent two types of so-called professional APCs, i.e. APC 
that express not only MHC II molecules but also co-stimulatory and adhesion 
molecules necessary to engage T cells.While DCs take up antigen at the site of in
fection and migrate to LNs to present antigen, macrophages primarily perform their 
function as APC at the infection site [Reinhardt et al. 2001] Thus, in examining the 
lung in M. tuberculosis infection, we focus our attention on the macrophage. 

13.3.3 Many Pathogens Regularly Interfere with the Antigen 
Presentation Process. 

Not surprisingly, since pathogens meet APCs continually as a first line of defense, 
many have evolved ways in which to inhibit antigen presentation, including both 
viral and bacterial pathogens. Cytomegalovirus is a viral pathogen that has been 
shown to inhibit antigen presentation, interrupting the MHC II expression pathway 
[Miller et al. 1998]. An example of one such bacterial pathogen is M. tuberculosis. 
Upon entering the lungs, M. tuberculosis is taken up by resident macrophages or 
DCs, adapts to the intraphagosomal environment, and survives or slowly replicates 
[Fenton 1998]. To evade immune surveillance, M. tuberculosis is known to inhibit 
antigen presentation via both class I and class II pathways in chronically infected 
macrophages [Grotzke & Lewinsohn 2005, Brookes 2003, Chang et al. 2005]. The 
mechanisms by which M. tuberculosis achieves inhibition of presentation via the class 
II pathway have not been completely elucidated, though several hypotheses have 
been proposed [Moreno et al. 1998, Hmama et al. 1998, Noss et al. 2000]. Without 
a detailed model of the molecular and cellular events of antigen presentation, it is 
difficult to assess the impact of various mechanisms of inhibition on the display of 
antigen and ultimately on the immune response. Early models by Linderman et al 
presented a first look at the dynamics of antigen presentation at the cellular level and 
demonstrated that the rates of endocytosis could be related to the display of antigen 
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[Singer &; Linderman 1990, Singer &; Linderman 1991, Petrovsky & Brusic 2004]. 
However, these models did not account for the more recently understood dynamics 
of antigen presentation and the role of IFN-7 in increasing MHC II expression. We 
developed a next-generation model of the molecular and cellular events required for 
display of antigen on the surface of the APC and describe how it might be used to 
elucidate the mechanisms pathogens use to interfere with the process [Chang et al. 
2005]. We use the number of pMHC complexes on the APC surface with respect to 
time as our output variable and our measure of antigen presentation unless otherwise 
stated. 

Our model uses ordinary differential equations (ODEs) to describe the time-
dependent processes essential to antigen processing and presentation [Chang et 
al. 2005]. A previous model of the class I presentation pathway applied a method 
known as nueral networks [Petrovsky & Brusic 2004]. As detailed earlier, these pro
cesses include uptake of protein antigen from the extracellular environment, degrada
tion of antigen within endosomal compartments into peptides, synthesis of MHC II 
molecules, peptide-MHC II binding to form pMHC complexes, and display of pMHC 
complexes on the APC surface. ODEs are well suited for modeling dynamical sys
tems when species are well mixed and present in numbers large enough that they 
can be considered continuous. Both of these conditions are met in the case of MHC 
Il-mediated antigen presentation by macrophages. We represent MHC II molecules 
using six variables to distinguish between intracellular and surface localizations as 
well as free, self peptide-bound, and exogenous peptide-bound forms. The portions 
of our model dealing with exogenous antigen and MHC class II peptide loading will 
be similar to the simpler model developed by [Singer & Linderman 1990]. 

Key assumptions made in our model development included the following: (1) Both 
antigen uptake and processing can be represented as single-step reactions. (2) Events 
leading up to MHC II expression require long periods of time relative to other 
events, e.g. peptide-MHC binding, and therefore should be included in our model. 
Long-lived intermediates of these events, mainly mRNA and protein species, will be 
represented explicitly, while shorter-lived intermediates such as second messengers 
will not. (3) Events bridging the appearance of MHC II molecules in the ER and 
removal of CLIP occur constitutively and therefore can be represented as one event. 
(4) All forms of MHC class II molecules are capable of being transported to and 
from the plasma membrane, including peptide-free ("empty") MHC II [Germain & 
Hendrix 1991, Santambrogio et al. 1999]. (5) The reaction scheme MHC + peptide 
<^ pMHC is sufficiently accurate on the timescales of the experimental conditions we 
wish to simulate to allow us to forego more complicated models of this process (e.g. 
in [Beeson Sz McConnell 1995]). Indeed, our calculations with peptides for which 
we have pMHC association and dissociation rate constants indicate that we can 
assume equilibrium binding in the endosome in the presence of the enzyme HLA-
DM. (6) Different self peptides bind to MHC II molecules with similar kinetics, 
despite being derived from various endogenous proteins, and can be represented as 
a single population. These self peptides will be available for MHC II binding or will 
be transported to lysosomes and degraded. 
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Parameters for the model were estimated from published experimental data; many 
parameters are similar to earlier models [Singer & Linderman 1990, Singer & Linder-
man 1991, Agrawal & Linderman 1996]. The model was validated under a number 
of control scenarios. For example, macrophage CIITA, MHC II mRNA, and MHC II 
protein levels have been reported at various time points by [Pai 2002] and [Cullell-
Young et al. 2001]; these data were used to verify the MHC expression portions of 
our model. Other simulations were compared to time courses of antigen presentation 
in the presence and absence of IFN-7 from the data of [Delvig et al. 2002]. In each 
case we matched both qualitative and quantitatively to the known experimental 
data (see [Chang et al. 2005] for full details of the negative and positive control 
simulations). 

Simulations were run using several ODE solvers to ensure consistency, including the 
NDSolve feature of Mathematica v4.2 (Wolfram Research, Inc.) and our own solver 
coded in C and run on Sun UNIX machines. We also performed a detailed sensitivity 
analysis integrated into the numerical solver. 

Using the model described above, we simulated several time courses of antigen pre
sentation. As net pMHC binding affinity was increased in the model (base + / - 25% 
is shown), the average number of pMHC complexes appearing on the surface over 
the first six hours of antigen exposure also increased (Figure 13.1). Depending on 
other conditions in the model, such as extracellular antigen level and level of MHC 
II expression, this number sometimes dipped below a threshold required to elicit 
T cell responses, approximately 200 pMHC complexes [Kimachi et al. 1997]. These 
results suggest that some variants of MHC II may hinder the development of adap
tive immunity, and that binding affinity is a key parameter a successful immune 
response. 

Fig. 13 .1 . Simulated time courses of surface pMHC levels following exposure to 
antigen as net pMHC affinity is increased. 
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13.3.4 M, tuberculosis Inhibits Antigen Presentation at Multiple 
Times using Multiple Mechanisms 

Inhibiting antigen presentation at some level is a strategy that many pathogens need 
to employ to evade immune killing. Because the many processes that constitute anti
gen presentation are complex and difficult to study individually, many mechanisms 
have been proposed to explain how pathogens may interrupt one or more of these 
processes. That M. tuberculosis inhibits antigen presentation in macrophages is now 
well established. Multiple studies have provided a number of hypotheses regarding 
the mechanism used by M. tuberculosis to inhibit antigen presentation, reviewed in 
[Harding et al. 2003], including (Hi) inhibition of antigen processing [Hmama et 
al. 1998, Singer &; Linderman 1990] (H2) of MHC II protein maturation (including 
delivery of MHC II proteins to the MHC and li processing), (H3) of MHC II pep
tide loading [Hmama et al. 1998] or (H4) of transcription of MHC II genes [Noss 
et al. 2000]. Our model addresses why multiple mechanisms have been observed, 
whether previous experimental protocols favored the detection of some mechanisms 
over others, and whether alternative mechanisms may exist. 

We included into our model of antigen presentation those processes hypothesized 
to be inhibited by M. tuberculosis: antigen processing, MHC class II maturation, 
MHC class II peptide-loading, and MHC class II transcription. Parameter values 
were estimated from the literature, mostly in vitro studies on mouse cells, and ma
jor features of the output, typically surface peptide-MHC levels, were compared to 
other experimental data. We then used the model to simulate experimental protocols 
from studies proposing hypotheses and found that some were biased to detecting 
mechanisms targeting MHC class II expression (Figure 13.2). We also found that 
mechanisms differed by the timescales on which they were effective (either less than 
or greater than 10 hours) and therefore might be used in combination by M. tubercu
losis to ensure continuous inhibition of antigen presentation. Finally, by analyzing 
the sensitivity of the model to variations in parameter values, we also identified 
other intracellular processes that may significantly affect antigen presentation (such 
as self-peptide synthesis) and be targeted by M. tuberculosis or other pathogens as 
a result. 

13.4 Genetic Epidemiology of TB- a further look at the 
impact of antigen presentation in a broader context 

One important application of a mathematical modeling approach can be to bridge 
gaps between biological scales of interest. Clearly, what manifests at the epidemio
logical level is a result of events that occur at many host-level scales. To illustrate 
one approach, we explore a link between effects occurring at the level of antigen 
presentation to effects manifesting at the population level during tuberculosis epi
demics. 
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Fig. 13.2. Simulation of one experimental protocol showing that detection of MHC 
class II expression-targeting mechanisms is favored 

Several studies have found that genetic factors influence susceptibility and resistance 
to M. tuberculosis infection [Kramnik et al. 2000, Bothamley et al. 1993, Goldfeld et 
al 1998, Selvaraj et al 1998, Bellamy k, Hill 1998, Bellamy et al 1998, Wilkinson et 
al 1999, Hill 1998]. These studies employ a variety of methods including large-scale 
association-based population case/control studies of candidate genes, family-based 
linkage analysis, investigation of rare individuals with exceptional mycobacteria sus
ceptibility, and comparison with murine models of disease. Such studies enable iden
tification of particular host genes that influence susceptibility to TB disease. 

The major components of susceptibility and resistance to TB appear to be linked 
directly to the immune response, and in particular to MHC class II molecules. Hu
man MHC molecules are termed human leukocyte antigen (HLA) molecules (but the 
terms tend to be used interchangeably). Increased susceptibility and resistance to 
more than 500 diseases has been shown to be associated with various HLA antigens, 
alleles, or haplotypes (sets of genes that are typically inherited as a unit) [Zachary et 
al 1996]. In some diseases, HLA expression may influence the balance and strength 
of the immune response [Pile 1999]. The level and type of immune response to a 
particular pathogen may vary among populations that have different distributions 
of HLA molecules. 

Many HLA genotypes are implicated in susceptibility to M. tuberculosis infection 
[Bothamley et al 1993, Goldfeld et al 1998, Selvaraj et al 1998, Meyer et al 1998]. 
Variable binding of mycobacterial antigens to the various HLA molecules may aff̂ ect 
the intensity of the adaptive immune response and thus influence susceptibility to TB 
[Lim 2000, Vordermeier 1995]. Expression of HLA-DR2 is strongly and consistently 
linked to pulmonary TB and the severe multibacillary form of TB in India [Selvaraj 
et al 1998, Singh et al 1983, Bothamley et al 1989, Brahmajothi 1991, Rajalingam 
et al 1996]. HLA-DR2 correlates with increased levels of serum antibody levels 
[Bothamley et al 1993, Bellamy & Hill 1998, Bothamley et al 1989], indicating an 
elevated humoral immune response, associated with active disease. The presence of 
the HLA-DR2 allele may induce tolerance to M. tuberculosis^ leading to uncontrolled 
growth of the bacilli [Rajahngam et al 1996]. In addition, HLA-DR2 correlates with 
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decreased production of key proteins that play crucial roles in granuloma formation 
and subsequent containment of bacteria [Tracey 1997, Flynn 8z Chan 2001a, Flynn 
& Chan 2001b]. 

13.5 Modeling Epidemic T B 

Our goal was to develop a mathematical model of epidemic TB that allowed us to in
vestigate different demographic populations with inherent susceptibility to infection 
by M. tuberculosis. To illustrate our approach, we highlight results related to India 
where the frequency of the HLA-DR2 allelle is high and prevalence and incidence 
levels of TB are significantly higher as compared with the rest of the world. We were 
motivated by previous work from our group which presented a first model of HIV 
infection within a genetically heterogeneous population, [Sullivan et al. 2001]. 

We have developed a model of epidemic TB using a modified Susceptible-Infected-
Removed (SIR) model with mutually-exclusive groups of individuals who are unin
fected, latently infected (those infected with M. tuberculosis but not infectious), or 
actively infected with M. tuberculosis (those infected AND infectious) [Murphy et al. 
2002, Murphy et al. 2003]. As our goal was to study the effects of a genetically sus
ceptible subpopulation on the dynamics of epidemic TB at the population level, we 
further subdivide each of these three groups to include individuals carrying a suscep
tibility allele for MHC II (DR2 in this case), resulting in the six mutually-exclusive 
populations. Due to extensive diversity in the HLA genetic system, we examine 
disease relationships based upon the presence of susceptibility with no distinction 
between homozygotes and heterozygotes. For full details of the model equations and 
assumptions, [Murphy et al. 2002, Murphy et al. 2003]. 

13.5.1 How to include the effects of genetic susceptibility 

Two things are important to consider regarding including effects of a susceptibility 
gene into this model. First, we divided individuals entering uninfected classes into 
a cohort that was neutral with respect to effects of a gene and a cohort that was 
susceptible because of the gene. To allow for births into the population, we defined 
a parameter that represents the fraction of the general population exhibiting a sus
ceptible phenotype. If we consider a specific genotype underlying this phenotype, 
then this value must be derived from the allelic frequency according to dominance 
patterns for that allele. In the model implementation, we considered this value to 
be constant. This could certainly be extended to include a time varying allelic fre
quency, as we did in [Sullivan et al. 2001], to examine selection processes. 

Second, based on the observed significant correlations of HLA-DR2 with active TB, 
we proposed three possible ways that the HLA-DR2 susceptibility allele may affect 
the susceptible cohort: 
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1. HLA-DR24- individuals have an increased probability of direct progression to 
active TB upon initial infection 

2. HLA-DR24- individuals exhibit an increased reactivation rate from latent to 
active TB 

3. HLA-DR2+ individuals are more likely to transmit and/or receive M. tubercu
losis. 

To account for these potential processes within the modeling framework, we intro
duced a parameter to describe the possible influence (s) of genetic susceptibility from 
our 3 hypotheses on baseline (i.e. genetically neutral) parameters. We do not pre
dict specific values for this parameter as none have been identified; rather we use 
this parameter to indicate where we included influences from hypotheses of genetic 
susceptibility and studied a wide range of effects. To observe the effects of this vari
ation, we predict 95% confidence intervals on our output measures (prevalence and 
incidence) based on large variations in this parameter. 

Parameter values and initial conditions reflect demographics of India (derived from 
the WHO and other data [World Health Organization 2001], as this is the popula
tion with the highest frequency of the HLA-DR2 allele. For this simple model we 
also assumed no treatment or therapy, as may be the case for many of the devel
oping countries with the highest burden of TB. Worldwide, the average (baseline) 
prevalence of TB is approximately 33%, and the average incidence is 135/lOOK/yr 
[Bleed et al. 2001, Chakraborty 1993]. Figure 13.2 (dashed curves) shows basefine 
simulations (worldwide) prevalence and incidence simulations together with a 95% 
confidence interval on the mean derived from an uncertainty and sensitivity analysis, 
see [Murphy et al. 2002, Murphy et al. 2003] for all details). 

Our goal was to determine what effects to the epidemiological system would likely 
have to occur to bring prevalence and incidence in line with the significantly higher 
level known to exist in India (where prevalence of TB is almost 50% and incidence is 
between 200-400/lOOK/yr) [World Health Organization 2001]. The model predicted 
that the scenario when HLA-DR2 affected all 3 hypotheses (listed above) simultane
ously yields results most closely in line with current outcomes for India (Figure 13.3, 
solid curves). The combined effects yield increased values for incidence and preva
lence closer to levels that are observed in India where HLA-DR2 is most prevalent. 
While the combined effects are more representative of current TB burden, they may 
be too high in some cases. One explanation is that the presence of known resistance 
alleles may balance these effects. 

While the role of genetic susceptibility is not well defined, it is clearly important 
to understanding the dynamics of infectious diseases. This is a first attempt to 
show how effects occurring at the immune system scale can impact dynamics in a 
significant way at the population scale. Further detailed studies along these lines 
can likely lead to suggested strategies for intervention and control. 
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Fig. 13.3. Shown are simulations of the epidemic model for susceptibility to TB 
over a 300 year period. Panel A indicates the Prevalence, and Panel B shows inci
dence cases per 100,000/year. The horizontal dashed curves indicate the worldwide 
(baseline) prevalence and incidence levels with 95% confidence intervals, while the 
horizontal solid curves indicate the simulated outcomes when all 3 hypotheses are 
altered indicating the effects of the susceptibility allele (also shown with 95% confi
dence intervals for variations of parameter values) 

13.6 A Temporal Model Tracking the Immune Response 
to M. tuberculosis in the Lung 

When a CD4+ T cell encounters an APC, and its T cell receptor (TCR) recognizes 
the specific pMHC being displayed on the surface of the APC, a series of events 
follows leading to T cell activation. This interaction between cells bridges to the 
next biological scale - that of cellular level events. As a first attempt to understand 
the cellular immune response to infection with M. tuberculosis, we have developed a 
temporal model that qualitatively and quantitatively characterizes the cellular and 
cytokine control network operational during TB infection in the whole lung [Wig-
ginton & Kirschner 2001]. Using this model we made a first attempt at identifying 
key regulatory elements in the host response. 

This first model was developed to capture infection with M. tuberculosis at the site 
of infection in the lung. Our 'reference space' is the entire lung tissue; however 
since no data are available in humans, we consider that the simulations take place 
in bronchoalveolar lavage (BAL) fluid, and we measure all cells and cytokines in 
units per ml of BAL, as data is available in humans and non-human primates. 
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While it is likely that the quantitative response differs between the airspace and the 
interstitium, we relied on the acceptance of BAL as a qualitative predictor of lung 
environment [Ainslie et al. 1992, Moodley et al. 2000]. 

We developed a mathematical system based on the interactions of a number of 
key cells and cytokines known to be important in TB infection. We tracked both 
extracellular and intracelluar mycobacteria, the cell populations: ThO, Th l and Th2 
cells, resting, activated and infected macrophages, and four cytokines: IFN-7, IL-12, 
IL-10, and IL-4. Our first goal was to develop a model that represents the basic 
processes of the immune response to Mtb. This model serves as a template on which 
to add other cells, cytokines, chemokines and interactions as new data warrants to 
determine how their presence augments or abrogates the system dynamics. 

Mathematical expressions were developed representing the interactions between the 
8 cell populations and 4 cytokines and parameter values for the rates and rate con
stants governing each of the interactions were determined (for complete details, see 
[Wigginton k, Kirschner 2001]. Values for most rate parameters were estimated from 
published experimental data, with weight given to results obtained from humans or 
human cells and Mtb-specific data over results based on BCG or other mycobacterial 
species. We outline below how we incorporate these data into the model. Estimates 
obtained from multiple studies are presented as a range of values. On those pa
rameters for which we have a range, or those for which no experimental data are 
available, we performed uncertainty and sensitivity analyses to obtain order of mag
nitude estimates (see the methods outlined above). As an example, we indicate how 
we estimate the decay rate of IL-10. When IL-10 was administered intravenously to 
human volunteers, one study estimated its half-life to be 2.3-3.7 hours [Huhn et al. 
1996]. A similar study estimated this quantity to be 2.7-4.5 hours [Huhn et al. 1997]. 
Therefore, we estimate a range for the half-life from 2.3 to 4.5 hours. The decay rate 
can be estimated from half-life given by the standard formula r = ln2/half-life. Thus, 
the decay rate of IL-10 lies in the range [3.69, 7.23] /day. Once the parameters values 
are estimated, we then simulate the model by solving the differential equations using 
an appropriate numerical method. Our lab utilizes both packaged software (such as 
Mathematica and MATLAB) as well as algorithms we coded in C/C"^"^ to directly 
compare results of these different platforms for accuracy. 

13.6.1 Simulating Infection Outcomes with M. tuberculosis 

The negative control, if there are no Mtb present in the system, yields a results 
with resting macrophages at equilibrium (3 10^ ml of BAL) and all other popu
lations and cytokines at zero (which agrees with estimates for resting macrophage 
populations in the lung in healthy individuals). The model also indicates that it 
is possible to be exposed to an initial bacterial inoculum and then clear infection 
with no memory of that response (i.e. PPD negative). This outcome is plausible, 
as it is thought that only 30% of individuals exposed to Mtb become infected (i.e. 
PPD positive) [Comstock 1982]. The other outcomes for the model are: latency and 
primary disease. Figure 13.4 presents representative simulations for two given sets 
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of parameter values - one leading to latency and the other leading to active disease. 
The different outcomes predicted by the model begs the question: "Which elements 
of the dynamical system that describes the host response to M. tuberculosis govern 
the different disease outcomes observed?". 

Parameter values that govern the rates and behavior of interactions in the model may 
change from individual to individual and over time within an individual. The virtual 
experiments reveal that changes in only certain parameters lead to the different 
disease outcomes - either latency or active disease. Our primary finding is that the 
rate of T cell killing (via cytotoxic or apoptotic mechanisms) of chronically infected 
macrophages governs infection outcome. High efficiency of T-cell killing of infected 
cells, and consequently bacteria, acts to maintain latency, while lower efficiencies lead 
to active disease. Further, a trade-off exists between the rate of activated macrophage 
killing of bacteria and T cell cytotoxicity; if macrophage function is compromised, 
the T cell response must be more potent in order to control infection. However, 
when the rate of activated macrophage killing of bacteria is considerably increased 
(beyond values estimated from experimental data), latency is consistently achieved, 
even for severely compromised T cell function. 

13.6.2 Virtual Deletion and Depletion Experiments 

The power of the models we develop is that they can be manipulated in a variety 
of ways to ask questions about interactions and rates within the system. By doing 
so, we can explore experimental outcomes on a scale that would be difficult, if not 
presently impossible, to analyze with other approaches. For example, we can per
form both virtual deletion and depletion experiments in this virtual human model for 
comparison with known experimental results in mice as well as to perform new ex
periments. Deletion experiments mimic knockout (disruption) experiments whereby 
we remove an element from the system at day 0, before any infection is imposed 
into the system. This type of analysis allows us to elaborate which system elements 
control the establishment of latency. Second, we can simulate depletion experiments 
by setting the relevant parameters to zero after the system has already achieved 
latency. These depletion experiments mimic, for example, the addition of antibody 
that can, to a significant level, neutralize most of a cytokine of one type. This analy
sis allowed us to determine what elements control maintenance of latency (data not 
shown- see [Wigginton & Kirschner 2001] for details). 

A limitation of this model is that it only tracks temporal dynamics while any spatial 
aspects are considered homogenous. Moving from a temporal-only model to a spatio-
temporal model allows us to elaborate the immune response seen in tissues- that of 
granuloma formation. 
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Fig. 13.4. Simulations of latency and active disease. The top two panels indicate 
the bacteria load during latency (left) and disease (right). Shown are the distinct 
intracellular bacteria (BI) and extracellular (BE) levels over a 500 day time-course. 
The bottom two panels indicate the macrophage populations over 500 days dur
ing latency (left) and disease (right). Shown are resting (MR), infected (MI) and 
activated (MA) macrophages. 
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13.7 A Model of Granuloma Formation- the Localized 
Immune Response to M. tuberculosis 

The process of granuloma formation leads to a core of dead and infected macrophages 
together with a centralized necrotic region. These are encircled by activated and rest
ing macrophages as well as CD44- and CD8+ T cells. Infected macrophages that 
have not been activated have bacteria growing within them can be killed by ac-
tiviated CD44- and CD8+ T cells, which both can act by cytotoxic and apoptotic 
pathways [Kaleab et al. 1990, Kaufmann 1988, Kaufmann 1993, Lewinsohn et al. 
1998]. Bacteria released are ingested and killed by other activated macrophages. 
These processes are mediated by a host of elements that must operate in concert 
to achieve successful granuloma formation. Cells are the key players, but their roles 
are orchestrated by a number of factors, including chemokines, cytokines, adhesion 
molecules and their corresponding receptors. Therefore, understanding the dynamic 
interplay between these immune elements during the time course of granuloma for
mation and maintenance will provide insight into the mechanisms that control this 
process. This should distinguish differences between proper functioning granulomas 
(leading to latency) from those that are unable to contain the bacteria (active dis
ease). A clinical study by [Emile et al. 1997] examined granulomas from 14 patients 
with BCG-induced infection (from receiving the TB vaccine!) . In these cases, it is 
likely some immune defect (potentially genetically linked) contributed to suscepti
bility to BCG-induced disease. However, some children suppressed infection while 
others suffered acute disease. Interestingly, granulomas formed by these two groups 
of patients were distinct and uniform throughout a given patient. Patients with 
well-circumscribed, well-differentiated, solid granulomas with activated macrophages 
and infected macrophages surrounded by lymphocytes containing few bacteria, sup
pressed infection. Patients with ill-defined, poorly differentiated granulomas with 
few giant cells and lymphocytes containing a plethora of macrophages filled with 
bacteria, suffered disseminated disease. Thus, the structure of the granuloma likely 
determines function which in turn determines whether the host suppresses infection 
or progresses to active disease. Therefore, understanding granuloma formation will 
aid in our understanding of the elements that contribute to success or failure of the 
immune response towards achieving latency in TB. 

The importance of the spatial aspect of the immune response to M. tuberculosis via 
granuloma formation has not yet been determined. Likely, the structure plays at 
least two important roles [Saunders & Cooper 2000]: first is to wall off the bacteria 
not allowing spread of an infection which cannot be cleared, but second is to facilitate 
communication between the immune cells affording an optimal, quorum sensing-like 
interaction [Bonecini-Almeida 1998]. The temporal model developed above is not 
able to capture this spatial behavior, so new models had to be developed. 

To determine the appropriate mathematical tool with which to study the formation 
and function of granuloma, we developed a series of mathematical models each using 
a different application, and then performed a formal comparison of each method (see 
[Gammack et al. 2005] for details). Here, we will focus solely on the approach where 
we used a computational system known as an agent-based model. This allows us to 
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capture the most discrete and stochastic representation of the forming granuloma. 
This approach also allows for heterogeneity in space and time. 

13.8 The Agent-based Model 

We have developed the first model of this type applied in the context of the immune 
response to a pathogen [Segovia-Juarez et at. 2004]. To develop an agent-based model 
4 things are necessary: a description on the agents, the rules that govern their 
behavior, the environment on which they reside and the parameters that govern 
their interactions. The environment is a key feature of ABMs; important details 
about modeling environments in general can be found in Chapter 12 by Stepney in 
this book. The environment is a 2-dimensional lattice representing 2mm x 2mm of 
lung tissue. The lattice is comprised of grids where the size of each grid can hold the 
largest cell-type, the macrophage. A single macrophage can reside is a grid with other 
smaller cell types (such as T cells) and large amounts of effector molecules, such as 
cytokines and chemokines. The agents are a mix of discrete and continuous entities: 
immune cells such as macrophages and T cells are discretely tracked, while the 
bacterial populations and effectors such as cytokine and chemokine are continuously 
tracked variables. Cells can take on one of several states. A macrophage can be 
resting, infected or activated, while T cells can take on resting or activated status. 
There are a complex set of rules that govern the individual behavior of each agent, 
as well as rules that govern their interactions. These are based on well-documented 
data. For example, if a macrophage takes up mycobacteria, there is a window of 
opportunity where a T cell can move into the same grid space occupied by the 
infected macrophage and activate it via direct cell signaling together with secretion of 
the cytokine IFN-7, allowing macrophages to clear the load of intracellular bacteria 
[Nathan et al 1983, Flesch & Kaufmann 1990, Armstrong & Hart 1971, Sturgill-
Koszycki et al. 1994]. This is one of the many rules coded into the model (see Figure 
13.5). 

Many of the parameter values are not known in this setting as they are probabilities 
and these are difficult to estimate in a wetlab. This makes the use of a detailed 
uncertainty and sensitivity analyses important in this context. We were the first 
to apply this analysis to study agent-based models [Segovia-Juarez et al. 2004]. 
For many of the other parameters, we could borrow from what we had estimated 
previously. For full details please see [Segovia-Juarez et al. 2004]. 

13.8.1 Simulating Granuloma Formation 

The behaviors that emerge from this model are complex and of three consistent 
types. First, a small solid granuloma forms showing containment of bacteria with 
little to no necrosis forming (Figure 13.6, Panels A, C). Second, we can also generate 
a larger, more necrotic granuloma that is consistent with dissemination (Figure 13.6, 
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Fig. 13.5. An example of a rule for the agent-based model. If an infected 
macrophage (M/) has taken up bacteria (small circles) a T cell can activate it with 
some probability p, which allows the macrophage to become activated (MA) and 
also to clear its intracellular bacterial load. 

Panels B, D). Third, we can simulate clearance of all bacteria with no trace of a 
granuloma (not shown). This last outcome is interesting as it predicts that under 
certain circumstances the immune response is efficient at clearance. This is suspected 
as only 30% of individuals exposed to M. tuberculosis become infected, however it 
has not been strictly documented. 

The top panels of Figure 13.6 show early time points (2 weeks) in the development 
of the granuloma under two sets of parameter choices: on the left T cells arrive to 
the site of infection on day 2 as compared with the right panel where they arrive on 
day 14. Also, the initial number of macrophages is higher on the right panel than 
on the left. Within 14 days, it is clear that already the granuloma on the left is 
more solid and contained than the one on the right which shows more diffusivity. 
By 6 months (bottom panels) the amount of necrotic tissue (shown in brown) is 
much greater and the granuloma on the right is much larger as compared with the 
granuloma forming on the left. Based on the study of [Emile et al. 1997] this would 
indicate that granulomas forming similar to those in the left panels would be able 
to contain infection, while those on the right would lead to disseminated infection. 

The benefit of mathematical modeling here lies in predicting what mechanisms de
termine these different granuloma outcomes. The sensitivity analysis we employ is 
based on a partial rank correlation and can identify (with statistical significance) 
the parameters in the model that when varied correlate to different outcomes. In 
the simulations shown in Figure 13.6, the timing of effector T cell entry onto the 
grid (from lymph node homing) is what was determinative. Interestingly, all of the 
parameters that relate to early numbers of resting macrophages present on the lat
tice positively correlate with bacteria load. This likely follows since they serve as 
the primary host for mycobacteria and their presence serves to propagate infection. 
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Parameter 

Chemokine diffusion rate 

Prob. T cell recruitment 

Prob. T cell movement 

Prob. T cell activates a macrophage 

Initial number of macrophages 

Prob. a macrophage is recruited 

Speed of activated macrophage 

30 days 

0.18 

-0.36 

-0.65 

-0.24 

0.40 

0.56 

0.31 

60 Days 

0.13 

-0.27 

-0.54 

-0.16 

0.54 

0.61 

0.61 

500 days| 

0.13 

-0.31 

-0.57 

-0.15 

n.s. 

0.75 

n.s. 

Table 13.1. Time-dependent partial rank correlations for the 7 parameters in the 
model (out of 27) that behave as bifurcation parameters driving the system toward 
containment or dissemination as they are varied. Correlations are shown for total 
bacteria load as the outcome variable of interest. Similarly, the size of the granuloma 
or amount of necrosis could be used as outcomes (p < .001 in all cases, unless not 
significant (n.s.)). 

Thus, reducing early inflammation (less than 60 days post infection via the influx 
of too many cells) could be beneficial towards halting infection or tipping the scales 
in favor of containment. Table 13.8.1 shows all 7 key host parameters with their 
correlation coeflScients over time. 

The agent-based approach has its strengths and weaknesses. The strength here is 
that individual cells can be tracked and at any moment in time all interactions and 
cell levels can be observed. Weaknesses include an inability for complete mathe
matical analysis. Regardless, this method uncovers some important features of the 
host pathogen interaction that we were unable to identify previously with any other 
approach. 

13.9 Discussion 

Despite a wealth of information in the biological literature regarding elements of 
the immune response over genetic, molecular, tissue and system levels, no single 
representation synthesizing this information into a model of the overall immune 
response currents exists. In this paper we present approaches for capturing each of 
these levels to address one specific case: the immune response to M. tuberculosis. The 
next goal is to combine information over the relevant biological and temporal scales 
to generate a single, integrated multi-scale representation. Such multi-scale models 
should be developed so that they are sufficiently general that they can be applied 
to answer a wide range of questions regarding immunity but adaptable enough to 
answer specific questions regarding, for example, pathogen invasion, tumors, vaccines 
or auto-immunity. One step towards achieve this goal will be to develop hybrid 
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models (such as multiple compartment, agent-based models) that include various 
biological scales. Here we have presented a number of models that each include 
representations of multiple biological scales, but none are a complete picture of the 
entire immune response to M. tuberculosis and its manifestations at the epidemic 
level. 

Once we can develop multi-scale models, we can apply them towards the generation 
of hypotheses regarding features of the roles of specific processes in immunity, such 
as antigen presentation. It is crucial to work under a hypothesis that events occurring 
at each level (genetic, molecular, cellular, and tissue) of the immune system affect 
the development of the overall immune response. 

For example, the efficacy of vaccines are in part determined by activation of CD4H-
T cells. A multi-scale model should enable testing the roles that various factors play 
in that activation. What is the relationship between antigen dose in the vaccine and 
the number of mature DCs appearing in a lymph node? Further, what aspects of 
the antigen presentation process should be targeted to optimize vaccine efficacy? 
Can our insights help to explain why BCG, the vaccine against TB used for the last 
80 years, has failed to control the TB scourge? As theoretical immunologists we are 
poised to make a strong contribution in this area through hypothesis generation and 
testing using multi-scale models. 
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Summary. The natural immune system is composed of a diverse array of cells 
and proteins which cooperate to attack infections in the body. These cells inter
act in space and over time in two principal ways: through direct physical contact, 
and via intermediate signaling molecules. The network of these interactions is ex
tremely complex and difficult to analyze. However, an attempt to understand how 
this network is organized is critical to further development of artificial immune sys
tems (AIS). This chapter attempts to characterize some of the major interaction 
mechanisms found in the immune system from a computational perspective. We 
also explore how AIS might exploit the properties of such interactions in practical 
applications. 

It is not intended or claimed that this chapter will be a complete or comprehen
sive discussion of immune system signals and interactions; for more detail the im
munology literature should be addressed. It is intended that this chapter provides 
a reasonable summary of some of the major and widely accepted interaction mech
anisms found in the immune system, as well as some insightful examination of their 
properties and potential uses in AIS. The final section of the chapter points out 
some artificial mechanisms and characteristics of applications that might benefit 
from particular aspects of the interactions identified. 

14.1 Characterizing some Immune System Actors and 
Interactions 

The immune system is complex and highly integrated with other organs and func
tional systems in the body. The approach taken here draws heavily on standard 
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immunological views, divisions and theories. At the outset it is relatively easy to 
identify a large set of interaction mechanisms and components. We can separate 
actor interactions into two broad categories: cell to cell and cytokine-mediated. By 
identifying specific cellular and cytokine interactions and examining how they facil
itate communication between the various components of the immune system (and 
other parts of the body) we can understand some relatively traditional and useful 
divisions and sub-components. 

Cell-to-cell interactions rely on very close proximity of cell membranes allowing 
interaction of receptors and ligands bound to their membranes. Phagocytosis falls 
into this category of interaction. More generally, cell-to-cell interactions require the 
participants to occupy the same small region of tissue at the same time. Cytokine 
interactions occur when cells detect small molecules in their environment which 
affect their function, movement or state in some way. Cells can interact by secreting 
intermediary cytokines, thus relaxing the constraint that they be in the same place at 
the same time. It will rapidly become clear that the number of interactions identified 
by immunologists is large in both of these categories, and the two types of interaction 
are often interdependent. 

Before delving into cell to cell interactions in detail it will be useful to provide names 
and descriptions of the actors and their roles. A list of cell types and the complement 
system and a brief caricature of their functions and interactions will prove useful 
in the discussion that follows. At this point it is worth noting that these cells are 
specialized "on the fly" by the immune system and that immunologists group the cell 
types in a number of ways. In order to retain the focus of the chapter on interactions 
the reader is directed to other sources for detailed descriptions of differentiation and 
development of different cell types and roles [Leslie 2000, Bullock et al. 2003, Luther 
& Cyster 2001, Janeway 2001, Sompayrac 2002]. The emphasis of the following 
descriptions is on interaction mechanisms. 

The complement system is a set of (about 30) proteins that has a range of functions 
essential to the priming and triggering of many immune responses [Medzhitov 
& Janeway 2002, Ochsenbein k, Zinkernagel 2000]. The action of these proteins 
involves an astonishing cascade of chemical interactions. The complement sys
tem is usually seen as the lowest layer of the mechanisms that stimulate the 
innate immune response and ultimately triggers the adaptive immune response 
as well. Triggering of the complement system occurs when particular pathogen 
associated molecular patterns (PAMPs) are bound by circulating proteins in 
the blood. Mannose on the surface of many prokaryotes is such a PAMP and 
triggers cleavage of complement components that begin the cascade. The most 
important effects of this cascade are the opsonization of pathogens (coating 
them with proteins that encourage phagocytosis), the attraction of leukocytes 
(in particular neutrophils and other phagocytic cells) through the release of 
powerful chemotactic cytokines, puncturing of bacterial membranes, and stim
ulating antibody production. To the best of the authors' knowledge computer 
scientists looking for immune system inspiration have so far entirely ignored the 
complement system's essential role. 
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Mast cells are present in large numbers in a range of tissues that are common entry 
points of infectious agents. They are involved in the elimination of helminthic 
parasites as well as some common bacteria such as E.coli These responses are 
stimulated by the activity of the complement system, and opsonization of some 
pathogens is necessary for effective binding and response by mast cells. They are 
also apparently stimulated by early responding leukocytes such as eosinophils 
and neutrophils. Mast cells also produce TNFa, an inflammatory cytokine that 
induces endothelial cells to capture circulating leukocytes. The production of 
TNFa and the close proximity to endothelial cells suggests that mast cells closely 
interact with endothelial tissue [Abraham Sz Malaviya 1997]. Interestingly mast 
cells are also often neuroconnected and thus interact directly with the neural 
system[Dines Sz Powell 1997]. This is a clear example of a strong relationship 
between two systems often considered as separate. 

Neutrophils (a type of granulocyte) are the most numerous of all white blood cells 
and are involved in a very wide range of innate immune responses. These in
clude phagocytosis of foreign cells (including yeasts, fungi and bacteria), toxins 
and viruses[Bonnett 2005]. They (like other leukocytes) are in constant flux in 
the blood and are recruited and activated locally when inflammation occurs. 
Adherence to and passage through the endothelium is promoted by a cascade 
of reactions beginning with the complement system. Neutrophils respond to 
some of the same inflammatory cytokines that activate endothelial cells. These 
cytokines cause neutrophils to express the reciprocal ligands to endothelial sur
face proteins, causing the neutrophils to become "stuck" to the endothelium. 
Once attached, the direct cell-to-cell interaction with endothelial cells effects a 
structural change in the neutrophils: they become flattened and pliable, allowing 
them to squeeze between endothelial cells, crossing the vascular boundary into 
the local tissue. They use concentration gradients of inflammatory cytokines 
such as TNFa to migrate through the tissue towards the center of inflamma
tion. Upon arrival at the seat of infection or trauma, the neutrophils will lyse 
pathogens to which they are sensitive via a number of different mechanisms 
depending on the particular pathogen in question. Neutrophils increase the in
flammatory response by the release of cytokines; which particular cytokines that 
are released is dependent on the type of infection or trauma that is present. Neu
trophils detect pathogens through receptors on the surface of the cells known 
as "Toll like receptors" (TLRs) which are capable of recognizing a range of 
PAMPs[Kurt-Jones et al. 2002]. A selection of about ten of these receptors is 
capable of triggering responses tailored to the elimination of the likely culprits 
associated with each pattern. 

Epithelial cells constitute continuous physical barriers between the host and the 
external environment (including the lung, gut etc.). They secrete natural an
timicrobial peptides called defensins in response to exposure to several inflam
matory cytokines such as interleukin-1 (IL-1) and TNFa [Stolzenberg et al. 
1997]. Epithelial cells also secrete several inflammatory cytokines when exposed 
to antigen, which they are known to recognize via TLRs [MacRedmond et al. 
2005]. 

Endothelial cells have numerous physiological roles, several of which are key to host 
defense. They make up the majority of the surface of blood vessel walls (lung, gut 
e t c . ) . They form the boundary between the blood (and thus the mobile immune 
cell populations) and the body's tissue. Endothelial cells are a cornerstone of 
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the inflammatory response because they express surface proteins when activated 
that bind circulating leukocytes. They are the principal component of dynamic 
dispatch of circulating leukocytes to infected tissue. As a result, they interact 
with a wide variety of cells (notably macrophages and neutrophils), and are 
activated in response to an array of inflammatory cytokines [Ebnet et al. 1996, 
Mclntyre et al 2003]. 

Basophils are a rather enigmatic type of granulocyte, and for a number of reasons 
including their relatively low abundance in circulating blood have largely been 
ignored in the study of the immune system. They are generally accepted to 
have some properties similar to mast cells and to react on similar timescales to 
eosinophils. They have been studied mostly in the context of allergic reactions 
and asthma in particular, but little is known about their role in normal immune 
function. Discoveries about their ability to produce large quantities of some 
cytokines (such as IL-4 and XL-13) which have important roles in defining B cell 
and T cell activity do however point to a role in the stimulation and suppression 
of adaptive immune responses [Falcone et al. 2000]. 

Eosinophils are granulocytes that are generally accepted to be eff*ective in dealing 
with multicellular parasites such as invasive worms. They also appear to per
form signalling roles much like other innate response leukocytes. In particular 
they are known to produce signals which affect mast cell and basophil function. 
Once again much research into their role in allergic disease has been under
taken somewhat at the expense of detailed examination of their function under 
"normal" conditions [Flood-Page et al. 2003]. 

Monocytes circulate in the blood and have the potential to migrate into tissues and 
diff"erentiate into macrophages or dendritic antigen presenting cells. Monocytes 
interact with the endothelium similarly to neutrophils. They are preferentially 
recruited to the site of inflammation by expressing ligands reciprocal to en
dothelial surface proteins upon exposure to inflammatory cytokines[Lichtman 
& Abbas 1997, Luscinskas et al. 1994]. 

Macrophages are eff"ector cells of innate immunity. Their primary role is to phago-
cytose microbes, killing them and presenting microbial components to helper 
T cells. Thus, they are central to the eff'ector response of the innate immune 
system, and are a bridge to the adaptive immune system. They are strate
gically placed in tissues where contact with pathogens is likely, such as sub
epithelial connective tissue and lymph nodes. They secrete TNFa upon phago
cytosis of microbes, amplifying inflammation. Monocytes diff'erentiate into tissue 
macrophages upon recruitment to the site of inflammation, so macrophages are, 
in effect, recruitable [Abbas et al. 2000]. 

Dendritic cells can be derived from a number of sources (including monocytes as 
described above), and migrate from the site where they engulfed the pathogen 
to lymph nodes where they present the pathogenic material (suitably prepro-
cessed). The way in which the material is presented and the cytokines that are 
produced during this process define the precise effect that presentation has on 
the B cells and T cells in the lymph node[McKenna et al. 2005]. The type of 
antigenic material (and the way that it interacts with TLRs on the monocyte) 
selects the outcome of this process. 

T cells that are capable of recognizing the fragments of molecule presented by 
dendritic cells are then activated and proliferate in order to attack pathogens 
which display similar molecular patterns and also stimulate macrophage activ-
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ity. These reactions involve the production of transcription factors which in turn 
switch on cytokine production genes causing the production of TNFa, IL-1 and 
chemokines which attract other leukocytes (neutrophils, etc.). The end result 
of these actions is localized inflammation of the infection site. T cells which 
differentiate in this way are known as Th l . Dendritic cells can also cause T cells 
to interact with B cells and cause them to produce large numbers of antibodies. 
Some of the mechanisms which distinguish this mechanism from the previous 
mechanism are unclear, but it seems likely that the cytokines produced by the 
dendritic cell in the interaction with the T cell are different and thereby evoke 
different behaviour. This is an example of a key paracrine interaction which me
diates cell to cell interaction. T cells which differentiate in this way are known 
as Th2[Abbas et al. 2000, Sompayrac 2002]. 

B cells are workhorses of antibody production by the immune system and like T 
cells occur in more than one subtype. B cells are produced in the bone marrow 
with the ability to recognize particular random antigens [Abbas et al. 2000, Som
payrac 2002]. B cells circulating through lymph nodes become activated when 
in contact with antigen that they recognize as well as a T cell that stimulates it 
simultaneously. Once stimulated the B cell will proliferate and generate plasma 
cells which migrate into the bloodstream where they produce very large num
bers of antibodies very rapidly. There is also evidence that B cells can stimulate 
each other in an idiotypic fashion and thereby remain active even in the absence 
of antigen [Jerne 1974]. The precise mechanisms of this interaction and its role 
in immune memory is both unclear and somewhat controversial. 

NK cells are effector cells of the innate immune system that specialize in lysing 
(killing) virus-infected host cells. They interact with macrophages via the cy
tokines XL-12 and interferon gamma (IFN7). Their proliferation and effector 
functions are increased in response to several inflammatory cytokines [Abbas et 
al 2000]. 

Figure 14.1 contains a number of the actors and interactions that are commonly 
reported in the immunology literature. Diffusible mediator interactions (signified by 
dashed lines in the diagram) are commonly classified into three types: paracrine, au
tocrine and endocrine. Autocrine interactions involve the production and detection 
of cytokines by cells of the same type. Paracrine interactions involve the production 
and detection of cytokines by cells of different types, for example the activation 
of macrophages by the production of IFN7 in T cells. Endocrine interactions are 
generally indiscriminate in nature and affect large numbers of cell types throughout 
the body with common signalling molecules. In general the cytokines involved in 
these long-range diffusible media interactions fall into three functional categories: 
inflammation mediators, specific immune response regulators and growth and differ
entiation factors. The complexity of this network of cytokines is horrifying to most 
computer scientists; accurate simulation or analysis of such systems is inevitably 
extremely difficult, computationally expensive and prone to cumulative errors. 

The diagram is not intended to be a comprehensive description of the elements 
shown, nor to contain all components commonly attributed to the immune system. 
It is however intended to highlight the highly connected nature of the graph of in
teractions. By including in the diagram even an incomplete set of the movements 
and interactions of the immune system components it is clear that the system is 
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Fig. 14.1. A condensed and incomplete view of immune system actors and 
interactions. Solid arrows indicate cell movements, dashed lines indicate cy-
tokine/protein/difFusible mediator signalling. 
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close to being a heterogeneous fully connected graph of interactions: a very large 
number of components affect and are affected by a very large number of other com
ponents. Such networks are by definition extremely difficult to analyse and charac
terize, they also appear to be quite common in naturally evolved systems. Brains, 
multi-cellular organisms, genetic expression networks, economic and cultural sys
tems, and ecosystems exhibit similar levels of connectivity and have so far proved 
impossible to understand, characterize and control despite enormous scientific effort 
in their study. 

In general the study of such systems as a whole relies on the use of complex system 
analysis techniques which neglect local detail in favour of global properties and be
haviour. Isolation of small sections of such networks and their study may well reveal 
detailed information about local mechanisms, but in general is not guaranteed to 
provide useful information about the full in vivo operation of the components under 
examination. A closed environment containing a dozen people for a few weeks pro
vides entertainment for poor television shows, but not necessarily useful information 
about the performance of the national economy or the functioning of normal social 
systems. 

14.2 Properties of Interactions 

The network of actors and their interactions described above has functional features 
that are of great interest to computer scientists [Cohen 2000b]. The immune network 
manages to achieve a level of coverage, reliability, and decentralized control that for 
many systems, is the "holy grail". 

14 .2 .1 H e t e r o g e n e i t y 

The wide range of actors and interactors within the immune system is the most ob
vious marker of heterogeneity within the system. This indicates that environments 
as varied as those presented to organisms such as humans may require a wide range 
of defenders, and that evolution has found no single actor, mechanism, chemical or 
cell type capable of dealing with all of the pathogens posing a threat. There is an 
obvious lesson to be learnt from this in the realm of computational systems: diverse 
problems require a range of specialist solutions [Wolpert 8z G. 1997]. Within the in
nate immune system we see a range of mechanisms and cell types for dealing with 
different circumstances ranging from heat shock proteins, the complement system 
and cytokines to eosinophils, neutrophils and macrophages. Each class of actor and 
interaction deals with different threats and stimulates different responses from other 
parts of the immune system and organism in general. This may in part be a result 
of the way in which evolution and co-evolution work: co-option and adjustment of 
existing mechanisms is commonplace which leads to initial diversity; and subsequent 
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evolution of pathogens in response forces further diversity of mechanisms and in
teractions to be produced. It may also be in part due to the simple observation 
that a wide range of potential mechanisms (and by implication interactions) is more 
likely to contain something for dealing with any individual pathogen: the shotgun 
approach. More realistically it is likely to be a combination of the two, with the 
latter effect taking over once diversity had been introduced by the former. 

14.2.2 Redundancy 

A consequence of the variety of mechanisms that evolution has retained within the 
immune system is that many of the mechanisms will be effective to some degree in 
many different situations and with many different pathogens and classes of pathogen. 
Examples of interactive redundancy occur throughout the immune system and its 
mechanisms. These include multiple receptors capable of recognizing (often different 
parts of) the same pathogen. This effect occurs within the innate immune system 
with TLRs and PAMPs as well as with antibodies produced by the adaptive immune 
system. A second layer of redundancy is within the signalling network of the immune 
system (and body) itself. Many functions are promoted by a range of different cy
tokines and many cytokines promote the same functions, sometimes in the same cell 
types and sometimes in others. Redundancy seems to increase the likelihood of the 
development of perceptual and functional degeneracy (see below) and to decrease 
the probability of a particular function being completely arrested by pathogenic 
or chemical activity. The existence of viruses that bind to, exploit, block or mimic 
particular cytokines also indicates that such redundancy and the co-evolutionary 
pressure to exploit it have significantly sculpted the human immune system in its 
present form. For further treatment on the topic of degeneracy, see chapter 7 and 6 
in this book. 

14.2.3 Perceptual degeneracy 

Perceptions of proteins and other molecules via receptors on cell membranes are 
degenerate in a number of ways. Imprecise recognition of proteins whether by T 
cells of MHC or by TLRs of PAMPs in a neutrophil ensures that slight mutations 
and alterations do not result in complete failure to recognize a possibly important 
feature. Binding of multiple sites on a molecule provides a further safeguard and both 
of these features are a natural consequence of the chemistry of the large molecules 
present in living systems. The concept of recognition balls as regions of the space 
of shapes of antigens is a direct consequence of this degeneracy and carries with it 
the possibility of somatic hyper-mutation of B cells. This allows fine tuning of the 
adaptive immune system to very precisely adjusted and specific antibody production. 
If perception by antigen receptors was not degenerate and was instead an "all or 
nothing" affair then the ability to optimize antibodies in this way would be removed. 
Thus perceptual degeneracy fulfils at least two vital roles: one in the innate and one 
in the adaptive immune system. 
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14.2.4 Functional degeneracy/pleiotropy 

Most of the actors and molecules active in the immune system elicit a wide range of 
responses in a wide range of actors. This can be extremely confusing when working 
with in vivo systems, and can result in surprising effects such as suppression of 
a function when a molecule is at very low concentration, excitation at a slightly 
higher concentration, and suppression at a slightly higher concentration again. Of 
course each gene may result in a number of other functions, some of which may be 
contradictory. Equally the functions may be completely unrelated and merely the 
result of serendipitous reuse during the evolutionary process. To add a little interest 
into this mix the location, internal state and external environment can modify the 
behaviour of actors further. 

14.2.5 Co-respondence 

One feature common to a number of immune system interactions is that a number 
of molecules/interactions must be present simultaneously for particular functions to 
be activated. Examples include the activation of B cells in the lymph nodes which 
requires both antigen presentation and T cell interaction to arise. The MHC is a key 
part of the immune system's chemistry and is used in a number of ways including 
the detection of "dangerous" self cells that do not display it on their surfaces, as 
well as in T cell binding. The use of multiple simultaneous interactions to avoid 
erroneous damage and to control responses more precisely is already well known for 
systems such as opening bank vaults and firing nuclear missiles; it provides security 
and flexibility especially when combined with the ability to combine signal presence 
and signal absence in controlling responses. Little has been made of such interactions 
computationally but their importance in the immune system implies that perhaps 
we ought to look more carefully. 

14.2.6 Gross parallelism: incomplete temporal ordering 

The gross parallelism of the immune system undoubtedly enhances its attractive
ness to computer scientists. It is also one of the first features to be discarded as 
computationally intractable. There is however a more subtle aspect to the gross 
parallelism of the immune system, and that is the impossibility of perfectly ordering 
the responses of such huge numbers of actors and components. The temporal evo
lution of an immune response is marked by more or less defined stages, but this is 
by no means reflected at the level of the individual cells involved. The shift from an 
initial inflammatory response to tissue damage through to the later stages of wound 
healing follows a clear temporal path, but it is not possible to precisely predict the 
states of individual cells: cells of a particular type will tend to be in a range of states 
clustered about some "average" state. Thus there is a loosely coupled temporal or
ganization of actor states which evolves (presumably) controlled by the properties 
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outlined in the previous few sections. This ability to maintain reasonable temporal 
coordination of a highly parallel system without perfect or complete communication 
channels is truly enviable for computer scientists. In general, highly parallel systems 
in computer science rely on well-defined, fixed and precise global coordination. The 
immune system achieves an appropriate level of approximate temporal coordination 
in a far larger system without using a central clock or control mechanism, instead 
the diffusion of cytokines and hormones locally defines the responses of individual 
actors. 

14.2.7 What about the rest of the body? 

Up to this point in the discussion the involvement of the parts of the body not con
sidered to be parts of the immune system has been ignored. The immune system does 
however operate in this much wider context and much of its activity is stimulated 
by interaction with the body at large and its interaction with the environment. The 
overlap in functionality between the immune system and other parts of the body 
not usually considered to be parts of the immune system is also considerable. For 
instance removal of the spleen (generally considered to be a part of the immune 
system) is usually not a particularly serious problem: its functions are partially re
placed by the liver and bone marrow. Far more widespread than this is the ability 
of any cell in the body to generate signals that invoke immune system responses. 
Molecules released when cells experience stress (heat shock proteins etc..) call into 
action NK cells and macrophages in order to clean up the mess. It is also now gen
erally accepted that microglial cells in particular are capable of phagocytosis, and 
indeed that almost any cell in the body is capable of phagocytosis should the correct 
circumstances arise. This raises the question of whether the immune system is truly 
separable in any meaningful sense from the other parts of the body[Ottaviani k, 
Franceschi 1996]. Perhaps parts of it can be meaningfully plucked from their nests, 
but it does not seem at all certain that alot is not lost in doing so. 

14 .2 .8 W h a t a b o u t t h e r e s t of t h e w o r l d ? 

A rather more fundamental question is about the validity of considering the immune 
system or indeed a complete organism in isolation from its environment. The trend of 
the last few decades in considering cognitive systems in a "situated" manner has led 
to a number of new ways of thinking about such matters [Clancey 1997]. Arguably, 
immune system researchers were at the head of the field in this respect [Varela 1981]. 
If one takes this stance seriously then the consideration of software and robotic sys
tems in conjunction with their environments is essential. Thus we are left to consider 
how such systems (and the immune system) coordinate with their environments, and 
how their environments coordinate with them. The notion of mutual coordination of 
any system and its environment is clearly attractive in the light of co-evolution and 
the development of homeostatic organisms, but it is open to debate as to whether 
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this really adds anything new to the design and development possibilities for artifi
cial systems. We will return to discussion of how the environment that a system is 
to be deployed in might affect a particular system toward the end of the chapter. 

14.3 Identifying "sub-systems" 

In this section we identify a few of the sub-systems that are widely accepted to be 
present in the immune system. We would however like to clarify our stance and point 
out a few potential pitfalls with the activities of subdivision, simpUfication and in 
particular biologically inspired computing. 

The nature of human thinking, and especially of reductionism as a scientific 
paradigm encourages the sub-division of complicated structures and systems into 
intellectually manageable pieces. The study of the immune system is no exception 
to this and the identification of pathways and sub-systems within the immune sys
tem forms a large part of immunological research. The types of system that can be 
identified are defined to a significant degree by the research interests (often medical 
and biased towards pathological cases), experimental methods and existing knowl
edge exploited by the researchers. As such they are unlikely to be the only or "best" 
way of splitting up the complex web that makes up the immune system. That mast 
cells are not well characterized and are most frequently studied in the context of 
allergy and that basophils are not a popular topic of research due to the difficulty of 
working with them provides reasonable cause to believe that such effects are likely to 
be commonplace. Indeed most biologists would (perfectly sensibly) see such effects 
as necessary consequences of working with complex in-vivo systems. 

Such arguments apply to most biological systems, but especially to the immune 
system due to its pervasive, diverse and spatially distributed nature. There are a 
few fixed structures that provide definite boundaries to be exploited in this anal
ysis process such as the bone marrow and thymus, but in general the components 
and actors that make up the immune system are mobile, variably concentrated, 
and dramatically multi-functional. Whilst this line of thought may call in to doubt 
the genuine biological validity of particular descriptions of immune agent functions 
and interactions, we do not deny their usefulness in furthering the understanding 
of the immune system and its functions. The fact that in vivo the immune system 
is very complicated does not necessarily imply that all of the complexity must be 
considered at every step. The fact that the in vivo system is closer to being a fully 
connected graph of interactions than to a set of disconnected pathways implies that 
any abstraction (and arguably any understanding of cause and effect) will require 
the removal of large amounts of important detail. That these abstractions and divi
sions can be, and are, made by biologists is the main reason for the attractiveness 
of biological systems to computer scientists. The computer scientist's wish to ex
ploit the biological models is a natural consequence of the belief that it is actually 
the arrangement, properties and interactions of immune agents as identified by the 
biologists that lead to the interesting, useful and unique behaviour of the organism 
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as a whole. The particular attraction of the immune system is that a number of 
its actors (or at least the biological properties as identified by the biologists appear 
to map neatly to existing computational techniques (see for example [Farmer et al. 
1986, Kelsey &: Timmis 2003]). A set of assumptions, one of which afflicts most 
computer scientists (including the authors) to some degree can be identified: 

i. the sub-systems and components as described by biologists are circumscribed 
by "natural" boundaries and by implication have some degree of functional 
separability over and above that likely to be found for similar sized arbitrary 
sets of linked components selected at random. 

ii. that sub-systems and components as identified by the biologists will be of interest 
and utility to computer scientists seeking inspiration. 

iii. that biologists really believe that they have identified the important features of 
the immune system when describing these sub components. 

iv. that it is valid to make computational simplifications and caricatures by using 
"off the shelf" components when building computational analogues of the sub
systems and their components. 

Clearly if none of these assumptions were ever valid then the exercise of biology and 
biologically inspired computing would be essentially meaningless, and there are those 
who believe that this is so. If however one is prepared to accept (i) and (ii) most of the 
time, to talk to biologists in order to ascertain when (iii) holds and to guard against 
(iv) by maintaining sufficient complexity and constantly re-examine the biology to 
avoid over-simplification then both activities maintain value. To a certain extent (i) 
is beyond the capabilities of current biological techniques to prove beyond doubt for 
many systems, and the authors would argue that large parts of the immune system 
probably fall into this category, so computer scientists are essentially acting in good 
faith and hoping that the biologists are getting it right. The blind acceptance of (ii) 
is rather more dangerous. Features of immense biological importance such as the way 
that the complement system can puncture bacterial membranes without damaging 
host cells are perceived from a computer science perspective as analogous to "clever" 
heuristic solutions. Careful examination of the biology is required to ensure that a 
useful and valuable analogy can be made before embarking on detailed analysis and 
development. Guarding against (iii) and (iv) is however much more manageable and 
it is to this end that work such as that presented in [Stepney et al. 2005b, Stepney 
et al. 2004] is directed. 

14.4 Immunologically Inspired Organization of 
Complexity 

Having cleared the air of a few fundamental limitations of biologically inspired com
putation in general and immune inspired computation in particular we can consider 
the immune system in this context. It seems clear that the connectivity of the net
work of interactions within the immune system and its connectivity to the rest of 
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the functions of the body preclude any attempts at full emulation of such a system 
at present. It is also interesting to consider the implications of such a highly con
nected system for identification of potentially useful subsystems. Interestingly it is 
the potentially valuable aspects of the immune system that make it so difficult to 
tease apart functionally. The heterogeneity of functionally interesting components 
and interactions is in stark contrast to other systems used for biological inspiration 
in computation. The electrical properties of the neural system are relatively easy 
to study in isolation from other aspects of the central nervous system, and despite 
enormous connectivity have proved valuable as a computational tool. Likewise, the 
representation and manipulation of computational problems in ways similar to nat
ural genetic systems has resulted in some useful computational tools and systems. 
It is by no means clear what components of the immune system are best suited to 
this type of subdivision and emulation, although the clonal selection theory and idio
typic network theory have proved popular targets [de Castro &: Von Zuben 2002, Neal 
2003]. These systems have relied on gross caricatures of their natural counterparts 
and despite meeting with some success have not resulted in systems that genuinely 
reflect the maintenance, cognitive and homeostatic roles of the complete immune 
system. This may well be because they fail to reflect the heterogeneity, redundancy 
and pleiotropy of the natural immune system. If this is so then computer scientists 
and mathematicians are in serious trouble: such systems are generally intractable 
with current computational and analytic techniques. 

A less depressing possibility is that researchers attempting to draw inspiration from 
the immune system have yet to identify the most suitable subsystems and features for 
emulation. Perhaps closer adherence to the natural systems is the route to success. A 
list of immune system components will generally include items such as the following: 

The complement system detects classes of problems and evokes specific responses 
in a decentralized and locally efficient manner. 

The innate immune system deals with common intruders and problems locally with
out resorting to complex computation and matching. 

The adaptive immune system is able to recognize and adapt to a wide range of 
potentially dangerous patterns. 

The bone marrow produces a range of leukocytes capable of completely covering 
the range of search space required for defence of the body. 

The thymus hones the T cell population to avoid damage to the self. 
The spleen removes infective agents and debris from circulation. 
Antibodies can be produced in a staggering range of shapes in order to eliminate 

pathogens with very high specificity. 
Phagocytes clean up messy and dangerous debris, and destroy foreign bodies with 

low specificity recognition. 
Toll-like receptors are effective at recognizing common patterns representative of 

classes of invaders. 
B cells can home in through hyper-mutation on a particular solution. 
T cells facilitate highly specific removal of pathogens. They are the main bridge 

between the innate and adaptive immune systems, and also play a central role 
in the eff'ector response to systemic viral infection. 

Dendritic cells preprocess and transport information in order to alert more flexible 
systems of potential problems. 
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Clearly these components do not only contain immune system components, and 
equally some of them overlap with each other. For instance the bone marrow pro
duces red blood cells as well as white blood cells, and white blood cells encompass 
both the innate and adaptive sections of the immune system. Categorization at this 
level appears to be a difficult activity when considering components for potential em
ulation in artificial immune system research. It is also apparent that at their various 
levels each of these components possesses some interesting and potentially useful 
properties. This overwhelming set of individual capabilities represents a range of 
modes of computation, any one of which may prove useful. For example it is easy to 
imagine a "virtual spleen" installed on a network router which is populated with vir
tual splenocytes that filter dangerous network traffic, or a population of phagocytes 
which move around the memory space of a Java virtual machine removing unref
erenced structures in the memory space. Producing analogies is not difficult, and 
justifying them is often a matter of careful wording and good journalism. Producing 
analogies and systems built around them that genuinely capture the complexity and 
essential properties of the immune system is a different matter. Indeed it can be 
argued that systems such as the virtual spleen or memory phagocyte as suggested 
above are actually missing the point and are unlikely to capture anything of the 
essence of the immune system and may well be better implemented in a range of 
conventional ways. It is also arguable that the components listed above and their 
individual properties as described above are nothing new in computing: they rely on 
pattern recognition, pattern generation and communication. Pattern recognition is 
a relatively well developed field in computing with several journals and hundreds of 
books, algorithms, proofs, and conferences to its name. Pattern generation through 
the types of manipulation inherent in biological systems (mutation and other genetic 
operations) have also been very keenly examined in the evolutionary computing lit
erature. Transmission of signals is also well studied and extremely well understood. 
The main feature of the immune system which is really of interest over and above 
those mentioned is how it is organized. 

The immune system is dramatically heterogeneous, redundant and many of its ele
ments are pleiotropic: and yet it is extremely robust to major perturbations such as 
removal of the spleen or amputation of a leg (and thereby half of its bone marrow). 
No computer system displays anything approaching this ability for reorganization, 
especially when the range of functions and the level of their integration into the rest 
of the body/system is considered. It seems clear that it is very unlikely to be the 
individual mechanisms and components that are important, but instead their inter
relationships, interactions, redundancies and functional overlaps. It also seems very 
likely that the close coordination of the immune system with the environment assists 
with both maintaining stability directly, and with developing structures within the 
immune system that are inherently stable within that environment. An example of 
a direct contribution to maintaining stability might be characterized by the flow of 
nutrients and hormones into the bone marrow which permits appropriate produc
tion rates to be maintained. Examples of the second type of contribution to stability 
might be the exposure to particular antigens which result in the acquisition of im
mune memories capable of preventing serious infection by common pathogens. Thus, 
perhaps consideration of how the mechanisms and features described earlier might 
be exploited in order to result in coordination with the environment might result in 
more immune-like computer systems than are currently under consideration. 
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Interaction within the immune system and with its environment is both the problem 
for researchers in immunology and the reason for the immune system's successful 
operation. It is doubtful that many biologists would argue with this statement, and 
yet as computer scientists we are constantly attempting to dissect and break up 
the system in order to capture its properties. This is not to suggest that the entire 
system must be emulated in order to capture any of the interesting properties, 
but instead to suggest that in order to capture the most interesting behaviour we 
must concentrate on the organization and properties of the interactions as well as 
the functions of the components that we wish to emulate. Thus we must ensure 
that the properties of the interactions are retained in addition to the functional 
properties of the components. Some of these key properties are likely to include those 
mentioned above: heterogeneity, redundancy, perceptual degeneracy, pleiotropy and 
co-respondence. By ignoring most or all of these properties in our artificial systems 
we are likely to be dramatically reducing the probability of reproducing the useful 
properties that we seek. 

14.5 A Computat ional View of Immune Complexity 

By now it should be quite clear that analyzing the immune network is no mean feat. 
Each individual immune actor is connected to many others, and those connections 
only vaguely describe functional interactions that are often incompletely understood. 
Further, those interactions occur on widely varying timescales and within the con
text of a volatile, interactive intercellular environment. Interactions between immune 
actors are as much a function of the cytokines in the local environment as of the 
actors themselves. Many AIS that feature "recruitment" of actors do so at the pop
ulation or concentration level, and essentially place all actors in the system in the 
same local environment. In other words, "recruitment" is limited to the fluctuation 
of concentration levels of species of antibodies within a common area of "tissue". 
These systems do not address environmental context, they focus entirely on classi
fication by affinity. This is tantamount to ignoring any structure that is inherent in 
the environment in which the AIS resides. A good example of this is the traditional 
clonal selection AIS [de Castro & Von Zuben 2002, Watkins et al. 2004] which fits 
within the framework of a general population-selection algorithm [Newborough & 
Stepney 2005]. Such algorithms evaluate the fitness (affinity) of the current pop
ulation at each iteration. In stark contrast the natural immune system evaluates 
affinity through biochemical interactions among actors that are non-uniformly dis
tributed throughout the body. The body also has a topology that is organized with 
host-defence in mind, and the distribution of immune actors complements that or
ganization. For example, CD4-f T cell activation occurs after exposure to peptide 
fragments embedded within class II MHCs on professional antigen presenting cells 
(APCs). However, exposure to such peptides occurs in the peripheral lymphoid or
gans (notably draining lymph nodes). The peptides were probably carried to those 
organs by dendritic cells, which matured from Langerhans cells in the skin. The 
activated CD4-h T cells then enter circulation to conduct their effector response 
[Abbas et al. 2000]. The immune system's evaluation of affinity is thus conducted 
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on a highly restricted subset of the total adaptive actor population which implies 
that a large proportion of the actors will not be prone to selection and therefore a 
very large number of highly diverse untested actors will always be present. 

The immune system is ultimately tasked with calculating affinity between all pos
sible antibody-antigen pairs. We use "antigen", because the immune system must 
of course also discriminate between self and non-self along the way to selecting a 
response (a high affinity match). Moreover, the immune system must make these 
comparisons all over the body, all the time. That is, in order to provide adequate 
host defence, a high-affinity antibody must be available for all possible antigens in all 
tissues, all the time. Of course, the body achieves coverage not with an omnipresent, 
large, and perfectly diverse antibody population, but rather with a network of actors 
that dramatically reduce the set of antigenic patterns that must be examined. 

The first, and possibly most effective actor in the immune network is the epithelium. 
This barrier provides an immeasurable reduction in the number of antigenic patterns 
that the rest of the immune system must later evaluate. Moreover, since it is totally 
non-specific, epithelial action could be considered to be "constant-time" in terms of 
computational complexity. 

An antigen that has overcome epithelial barriers and invaded tissue presents a major 
challenge to the immune system. Because no assumptions about the location of 
the invasion can be made, the body must be prepared to fight infection in any of 
its tissues. However, that fight will involve a multi-pronged assault, only part of 
which is tailored specifically to the invader. Thus, part of the fight may be begun 
as soon as the self/non-self determination has been made. That determination is 
typically performed by a set of actors from the innate and adaptive immune systems. 
Professional APCs make the first half of the determination: they break down protein 
that they encounter and then attempt to install the resulting protein fragments 
into MHC molecules. Those fragments that can be successfully bound by MHC are 
transported from within the AFC to its surface for expression or presentation. This 
processing represents a low complexity computation step performed by the immune 
system as the first phase of self/non-self determination. 

The second phase is performed by a key controller of peptide antigen immune re
sponse: the CD4+ helper T cell. Helper T cells are specific to peptide fragments 
displayed by APCs. However, helper T cells only bind peptide-MHC complexes; 
they will not bind free peptides or MHC by itself. Further, the interaction between 
helper T cells and peptide-MHC complexes is of much lower affinity than the inter
action between the equivalent protein antigen and its specific antibody species. So 
this interaction should be interpreted as one of intermediate complexity: lower than 
full antibody recognition, but higher than AFC uptake/processing. 

Finally the adaptive layers of the immune system result in the production of highly 
specific cells and antibodies that eliminate the carriers of particular antigens. This 
process can be viewed as a higher computational complexity search of the space of 
possible patterns and is less localized to sites of damage and infection. The systemic 
nature of antibody production by B cells has led to the types of algorithm which 
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are currently prevalent in AIS[de Castro &; Timmis 2002a] which essentially ignore 
environmental structure and localization of response, but if systems that exploit the 
full richness of the natural immune system are ever to be achieved, then inclusion of 
environmental context within which to situate analogues of the innate actors seems 
to be indispensable. A corollary of the inclusion of such components is that the 
computational complexity of such systems is likely to be reduced significantly as a 
large portion of the computation carried out by such a system is likely to be in the 
lower computational cost (innate) layers of the system as described above, with only 
occasional breaches of these defences resulting in deployment of full clonal selection 
based responses. The price to be paid is of course in the structural complexity of the 
computational system which implements such multi-layer systems. It is encouraging 
that AIS researchers are now turning to 'alternative' immune components, such as 
Dendritic Cells (DCs), as the inspiration for their work. In one such case. Green-
smith et al have described an algorithm for anomaly detection inspired by DCs. The 
algorithm models DCs that classify antigen as malignant or benign based on envi
ronmental signals, and features regulatory and inflammatory cytokines. [Greensmith 
et al. 2005] We refer you to their work for the mechanics, but would like to point 
out their stated hope that such a system would find its way into a working, dis
tributed artificial immune system. The system exemplifies the benefit to be gained 
by offloading classification load to low-specificity immune components. 

14.6 Implications 

If the importance of the properties and complexity of the interactions in the immune 
system is accepted as central to the generation of many of the key features that the 
immune system displays, then a number of conclusions about the types of system 
and computational analogies that should be approached in the future can be drawn. 

Systems requiring multiple representations of actors, information and interactions 
should become tractable and appropriate if suitable analogies can be con
structed. This is merely the recognition that the heterogeneity that the immune 
system supports and exploits can also be supported and exploited in computa
tional analogies. A fundamental problem for many types of artificial intelligence 
solution is the selection of a suitable representation which captures the essence 
of the problem at hand whilst permitting suitable operations to be performed 
on the data in all cases. Selection of representations is rarely simple and often 
excludes some cases or situations from inclusion in the system. For example 
most systems that depend upon continuous values usually deal in very unsatis
factory ways with binary valued fields and missing values. The use of an immune 
inspired solution in such circumstances may allow the use of a number of diff'er-
ent representations and/or processing regimes in different circumstances and/or 
diflPerent parts of the system and thereby allow a principled approach to tackling 
such problems. 

Systems requiring distributed detection of correlations of events and/or patterns can 
be considered, and exploration of immune system interaction analogues that are 
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capable of temporally and spatially organizing themselves can be expected to be 
fruitful. Thus the straightforward use of artificial immune systems for detection 
and classification can be rapidly extended to cases requiring consideration of 
timing and locality of events and patterns. For example the use of computa
tional analogues of cytokine diffusion, decay and detection could contribute to 
the development of such systems. 

Systems requiring close integration and distribution of pattern recognition mecha
nisms with existing complex engineered systems can be considered. The ability 
of the immune system to both maintain the integrity of the normally oper
ating body and to detect and repel invasive agents ought to be replicable in 
engineered systems. This is a reflection of a possibly bigger challenge for bio
logically inspired computing: that of considering systems as complete organisms 
situated within their environments and attempting to reproduce homeostasis at 
the organism level. Systems such as robots are complex heterogeneous systems 
in themselves and have a number of different components and subsystems that 
may lend themselves to maintenance and monitoring in layered, immunologically 
analogous ways. 
Mechanisms inspired by the layers of immune response found in both the innate 
and adaptive parts of the immune system described above could be included 
and exploited by using both hand coded remediation routines and adaptive 
components similar to those currently prevalent in AIS and by integrating them 
in immunologically plausible ways. 

The system engineer would be wise to look for embodiment opportunities. Essen
tially, embodied systems compute in cooperation with their environment. In brief, 
an embodied agent perceives its environment and alters it, which alters the agent's 
subsequent perception. This simple-sounding feedback process produces astonish
ing complexity in the system. Luckily, many applications that welcome an immune 
approach also offer opportunities to use environmental dynamics to parallelize com
putation. For a detailed explanation of embodiment, please see Chapter 12. 

^From the preceding descriptions of potential application types it seems that the 
acceptance of the importance of the nature of the interactions in the immune system 
leads naturally to the expectation that far more complex and ambitious immune in
spired computation than is currently attempted is required and should be possible. 
The careful exploitation of multiple signals, mechanisms and representations cou
pled with redundancy and pleiotropy ought to lead to successful construction and 
control of quite complex systems using immune inspired techniques. Managing this 
additional complexity ought naturally to emerge from the systems if the analogies 
are correctly drawn. It is by no means obvious that this will actually occur in prac
tice without considerable engineering effort and experimentation. Indeed it would be 
truly miraculous should little additional effort be required at least initially. There is 
not going to be a free lunch. Even if it seems unlikely that artificial immune systems 
will be able to dine for free, perhaps we can hope that they will be the first to "go 
Dutch" by exploiting rather than suffering from the complexity in the environments 
that they are addressing. 
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Summary. This chapter explores the distributed nature of the immune system as a 
source of inspiration for a distributed learning algorithm. It discusses modifications 
to the AIRS immune-inspired learning system which off'ers an initial examination 
of using distributed computing techniques for immune-inspired systems. A variety 
of results from a computational efficiency and classification accuracy standpoint 
are presented. It is argued that this basic step toward a distributed computing 
algorithm may be fruitful for future explorations of the distributed nature of the 
immune system and how it might inspire computational solutions. 

15.1 Introduction 

One of the many reasons for exploring verterbrate immune systems as a source 
of inspiration for computational problem solving include the observations that the 
immune system is inherently parallel and distributed with many diverse components 
working simultaneously and in cooperation to provide all of the services that the 
immune system provides [de Castro Sz Timmis 2002a, Dasgupta 1999]. Within the 
AIS community, there has been some exploration of the distributed nature of the 
immune system as evidenced in algorithms for network intrusion detection (e.g., 
[Hofmeyr & Forrest 2000, Kim 2002]) as well as some ideas for distributed robot 
control (e.g., [Lee et al. 1999, Lau & Wong 2003]), to name a number of examples. 

As Stepney discusses elsewhere in this book, the environment in which our com
putational system are embodied can play a key role in the overall behavior of the 
system. While the basic ideas discussed in this chapter undoubtedly suffer from a 
fairly impoverished sense of environmental richness, the exploration of a more dis
tributed environment presented here off'ers an initial direction for a larger discussion 
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on the impact of the role the environment of the computational system plays in the 
overall results generated. 

In distributed computing, the impetus tends to be an exploration of the use of com
putational resources for increased diversity of reaction or on problem solving in a 
highly decentralized manner where each computational resource requires indepen
dent decision making facilities with little to no input from a centralized mechanism. 
Beyond just the development of learning algorithms inspired from observations of 
nature, this chapter explores the ability to harness greater computational power for 
these tasks. With the recent proliferation of clusters of computers due to the de
creasing costs of commodity computing components, it has now become extremely 
feasible to dedicate multiple computers to a given problem solving task. This leads 
to several possible consequences. The most obvious one is the ability to speed up the 
overall processing time in order to arrive at more timely solutions. This is extremely 
appealing from a machine learning/data mining perspective. One of the motivations 
for developing machine learning algorithms is in their abilities to save time for hu
mans in complex tasks. By utilizing multiple computers or large parallel processors, 
machine learning algorithms, which can take advantage of this increased power, will 
also increase their benefits to the user. 

This use of multiple processes in our learning algorithm also provides the ability 
for the development of more robust, or in depth, solutions. In other words, we 
can take the known computational technology of a parallel system and look for 
ways to incorporate this power in our developing biologically-inspired system. With 
many bio-inspired algorithms taking on an evolutionary component, the ability to 
evolve and explore separate niches and species of solutions on individual processors 
and then bring these individual populations to bear on the problem as a whole is 
potentially invaluable. The use of these distributed processing techniques allows us 
to further enhance our immune model. The immune system is inherently distributed 
and decentralized; therefore, it is important to the evolution of the field of artificial 
immune systems that we explore the use of distributed and parallel computing in 
order to more fully explore this biological potentials. While there has been some 
work on machine learning and evolutionary algorithms using large multi-computers 
or clusters of computers (see [Cantii-Paz 1998, Chattratichat et al. 1997] for some 
basic examples), very little in the application of parallel and distributed computing 
techniques for immune-inspired learning has been explored. 

This chapter examines an initial approach to applying distributed computing tech
niques to the AIRS learning algorithm [Watkins et al. 2004]. AIRS is an immune-
inspired learning algorithm which employs the concepts of B-Cell interactions and 
clonal selection to develop a set of memory cells capable of classifying previously 
unseen data. In previous work, our initial approaches to utilizing multiple proces
sors on the AIRS learning algorithm provided mixed results [Watkins & Timmis 
2004, Watkins 2005]. While the methods explored allowed us to maintain classifi
cation accuracy and provided modest computational gains, the parallel efficiency of 
those modifications were less than desirable. In keeping with our theme of the de
velopmental process of a biologically-inspired algorithm, this chapter examines the 
decentralized nature of the immune system as a source of inspiration for learning. 



15 Immune Inspired Learning in a Distributed Environment 333 

While we still are exploiting standard computational techniques, we introduce a dis
tributed processing version of AIRS that allows us to explore this biological concept 
in more detail. 

In our previous parallelization schemes we were extremely focused on the gathering 
and merging of the memory cells at the root process. We felt this memory cell 
merging was necessary in order to preserve the final predictive model that was so 
attractive in the serial version of AIRS. However, if we remove this self-imposed 
goal of maintaining a single pool of memory cells, we can explore more interesting 
options. 

This chapter examines a different slant on parallelizing the AIRS algorithm. Rather 
than viewing the goal of our parallelization as developing a memory representation 
identical to the serial version, we now choose to exploit the behavior of the entire 
parallel system. If we treat the entire parallel system as a learning model, rather 
than just a memory cell generation factory, we can offer much more solid compu
tational gains. This approach also has the attractive feature of pointing us to a 
more distributed AIS algorithm. Since biological immune systems do not have one 
central antigen identification location, we would like to explore algorithms that also 
are divorced of this idea. This decentralized view would also allow us to explore 
more fully the ability of the system to develop a localized response. This would be 
achieved through localized learning, as well. So beyond just a global evaluation, the 
local evaluation can provide interesting information about the nature of the learning 
system, also. 

We begin this chapter by briefly discussing the salient aspects of the AIRS algorithm 
and providing an overview of this new distributed version of AIRS. We highlight here 
the changes made to our parallelization of AIRS and the implications these have in 
terms of classification. We follow this with a series of experiments. We find that 
our computational gains are much greater through this distributed approach and 
that our new version of AIRS is much more scalable. Yet these changes present 
several question with regards to the purpose of the AIRS algorithm. We conclude 
this chapter with a discussion of how this new version of AIRS provides for the 
potential for more biologically plausible immune algorithms. 

15.2 AIRS and Distributed AIRS 

This section provides a high-level overview of the AIRS algorithm and then discusses 
the modifications to this algorithm for the creation of a distributed learning system. 
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15.2.1 AIRS 

The Artificial Immune Recognition System (AIRS) is a supervised learning al
gorithm inspired by the immune system. Initially proposed by Watkins [Watkins 
2001], AIRS has undergone a series of refinements and augmentations over the years 
[Watkins et al. 2004, Watkins & Timmis 2004, Goodman et al 2002, Goodman 
et al. 2003]. AIRS is a specifically designed one-shot, supervised learning algorithm 
which appears robust to the parameter space, and performs well on a number of test 
problems [Watkins et al. 2004]. Immunologically speaking, AIRS is inspired by the 
clonal selection theory of the immune system. AIRS capitalises on this immunologi
cal mechanism, and through a process of matching, cloning and mutation, evolves a 
set of memory detectors that are capable of being used as classifiers for unseen data 
items. Unlike other immune inspired approaches such as negative selection, AIRS is 
specifically designed for use in classification, more specifically one-shot supervised 
learning. 

Essentially, AIRS evolves with two populations, a memory pool (M) and an ARB 
pool (C). It has a separate training and test phase, with the test phase being akin 
to a k-nearest neighbour classifier. During the training phase, a training data item is 
presented to M. This set can be seeded randomly, and experimental evidence would 
suggest that AIRS is insensitive to the initial starting point. The training item is 
matched against all memory cells in the set M, and a single cell is identified as 
the highest match, MCmatch- This MCmatch is then cloned and mutated. Cloning 
is performed in proportion to stimulation (the higher the stimulation, the higher 
the clonal rate), and mutation is inversely proportional (the higher the stimulation, 
the lower the mutation rate). These clones are inserted into the ARB pool, C. The 
training item is then presented to the members of the ARB pool, where an iterative 
procedure is adopted which allows for the cloning and mutation of new candidate 
memory cells. Through a process of population control, where survival is dictated by 
the number of resources an ARB can claim, a new candidate memory cell is created. 
This new candidate is compared against the MCmatch, with the training item. If the 
affinity between the candidate cell and MCmatch is higher, then the memory cells is 
replaced with the candidate cell. This process is performed for each training item, 
where upon the memory set will contain a number of cells, capable of being used 
for classification. Classification of an unseen data item is performed in a k-nearest 
neighbour fashion. 

15.2.2 A Distributed Approach 

The reaction of the biological immune system to incoming antigens takes place in 
numerous places throughout the body. Unlike the nervous system which is centrally 
located, there is no one site that we can point to as the source of all immune 
responses. Immunological components circulate throughout the system and react 
in place as needed. We would like to be able to capture this idea in our artificial 
immune algorithms as well. Our new approach to exploiting increased computational 
resources for AIRS begins this process. 
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We start with a simple model of distribution. For this method, we begin by dis
tributing a random subset of the training data to each process. We continue, by 
allowing each process to react to this subset of data with the usual AIRS training 
routine. However, unlike in our previous approach [Watkins & Timmis 2004], we 
no longer gather the developed memory cells back to the root process. Instead, we 
now view the entire parallel system as a distributed classifier with multiple classi
fication sites. Figure 15.1 presents a graphical view of this concept. Some of these 

step 4: 
Distributed test 
data classified 
by locally 
developed 
memory cells 

Fig. 15 .1 . Distributed AIRS 

sites may be better trained to handle certain classes of the data than others. This 
is in keeping with our biological systems where there is a need for cell recruitment 
to certain areas that are under attack if the cells currently at that location are not 
trained to handle the given invader. We do not tackle the issue of recruitment and 
the communication of developed memory cells at this time. Rather, we focus only 
on allowing each processing site to develop its own miniature model of the data set 
based on its training subset. 

For classification, we again distribute the test data throughout the parallel system. 
This may lead to uneven classification of some data items if the data items are 
assigned to sites that are not as equipped to recognize them as others sites may be. 
Nevertheless, we can then evaluate the performance of the system globally on the 
test data. We can also investigate the local reactions made by each processing site 
to its assigned pieces of data. 

This introduces the need for multiple ways of assessing the performance of the 
system. One of our chief concerns is the runtime of the system. We want to examine 
how utilizing more processing power increases our computational gains. We can also 
still grade the performance of the entire system based on the same classification 
criterion used earlier. However, the introduction of this distributed memory and 
reaction model means that we also want to assess the performance at the local 



336 Andrew Watkins 

level as well. To this extent, we examine the classification capabilities of individual 
processors on their randomly assigned data. Eventually, this could lead to a network 
or recruitment based model in which individual populations of memory cells can pass 
on their classifications and their degrees of confidence in that classification. For now, 
however, we present a model that is divorced of any interaction other than the initial 
scattering of the data. 

We find that the core characterization of AIRS as a learning algorithm does not 
change. However, the final memory model and subsequent decisions based on this 
model do need to be reevaluated. Each processing site continues to develop its own 
set of memory cells in the same way as the serial version of AIRS. However, the 
decision that the system makes concerning a given input is now completely de
centralized. While the mechanics of this decision remain the same (i.e., an affinity 
based approach involving the closest memory cells), the memory structure itself has 
been altered due to less information available at any one given site. For the cur
rent formulation, each site remains limited in this way; however, this is only an 
initial prototype step. A next step in the evolution of this algorithm could be to 
incorporate meta-learning strategies or other distributed learning approaches to the 
disparate memory models [Brazdil et al. 1991, Chan k, Stolfo 1993], or it could be to 
examine communication strategies available in the immune system, such as cytokine 
networks or immune network models, to more fully integrate the localized reactions 
of the system. 

15.3 Verification Experiments 

We begin by performing experiments three machine learning benchmark data sets 
which have been previously used to test the serial version of AIRS [Watkins et 
al. 2004]. We want to examine both the global and local performance of our new 
classifier. Additionally, we are also concerned with computational gains, and this is 
presented here as well. 

15.3.1 Experimental Design 

For the experiments presented in this section, we used the Iris, Pima Diabetes, and 
Sonar data sets that were used in previous studies of AIRS [Watkins et al. 2004]. 
For all of these we took an average over 30 cross-validated runs and tested the 
parallel version on an increasing number of processors. In keeping with previous 
experiments on these data sets, we used a 5-fold cross-validation for the Iris data 
set, a 10-fold cross-validation for the Pima Diabetes data set, and a 13-fold cross 
validation for the Sonar data set. A cluster of dual-processor 2.4Ghz Xeons were 
used. The Message Passing Interface (MPI)[Gropp et al. 1999, Snir & Otto 1998] 
was used as the communication library and communication took place over a Gigabit 
Ethernet network. 
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In order to assess the performance of this new formulation, we offer several metrics. 
We begin with the global accuracy of the system. This is measured by counting the 
number of correctly classified test items at each processor and dividing it by the to
tal number of test items distributed to the system. While this global accuracy is not 
identical to that achieved through a single merged memory cell pool, it does provide 
a quick overview of how, on average, the system would react to a random data item 
presented to a random processing site. We then examine the local accuracy. For 
this, we report the average minimum local accuracy and the average maximum local 
accuracy. That is, for each run we record which site did the poorest on its assigned 
test data and which did the best. We also explore the size of the memory model 
developed. We look globally at the number of memory cells developed throughout 
the system, and we also look at the minimum and maximum number of memory cells 
developed at individual sites. Finally, we look at the parallel performance charac
teristics. In keeping with our goals of achieving faster and more efficient processing, 
we measure the average run times, speedup, and parallel efficiency of the system. 

15.3.2 Results 

Tables 15.1, 15.2, and 15.3 give the global accuracy and memory cells developed 
from this distributed version of AIRS on the Iris, Pima Diabetes, and Sonar data 
sets. 

np Accuracy MCs 

1 95.16%(3.06) 63.11(4.70) 

2 94.56%(3.98) 74.15(4.53) 

4 94.38%(4.59) 84.17(4.12) 

8 93.53%(4.04) 95.49(3.56) 

16 88.33%(4.88) 104.49(2.91) 

Table 15.1. Distributed Iris: Global Accuracy 

For all of these results we see a drop-off in this measure of global accuracy as we 
increase the number of processing sites. However, what this actually means as far as 
the classification performance of our new algorithm is less clear. As we mentioned 
in section 15.3.1, this metric is not exactly equivalent to the accuracy measures for 
AIRS when using a global memory cell set. This is merely a measurement of the 
sum of the number of correctly classified items at each processing site divided by 
the total number of test items distributed throughout the system. Section 15.3.3 
provides more discussion into this matter. 
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np Accuracy MCs 

1 73.00%(4.40) 279.04(10.11) 

2 72.29%(5.00) 317.44(11.00) 

4 71.80%(4.75) 358.16(11.39) 

8 71.67%(5.06) 400.03(11.63) 

16 69.24%(5.15) 445.96(11.06) 

Table 15.2. Distributed Pima Diabetes: Global Accuracy 

np Accuracy MCs 

1 84.79%(8.15) 173.11(3.62) 

2 78.81%(9.00) 179.89(3.04) 

4 72.61%(11.24) 184.65(2.41) 

8 66.97%(11.64) 187.80(1.90) 

16 61.94%(12.28) 190.05(1.25) 

Table 15.3. Distributed Sonar: Global Accuracy 

Tables 15.4, 15.5, and 15.6 provide the average minimum and maximum test set 
accuracies and minimum and maximum number of memory cells developed at in
dividual processing sites for distributed AIRS on our three bench mark learning 
problems. 

np Min. Ace. Max. Ace. Min MCs Max MCs 

1 95.16%(3.06) 95.16%(3.06) 63.11(4.70) 63.11(4.70) 

2 90.58%(7.25) 98.53%(2.88) 35.11(2.81) 39.03(2.48) 

4 87.36%(8.88) 99.42%(2.65) 18.83(1.43) 23.45(1.52) 

8 64.94%(20.24) 100.00%(0.00) 9.56(1.00) 14.03(0.70) 

16 19.00%(29.92) 100.00%(0.00) 4.80(0.60) 7.92(0.27) 

Table 15.4. Distributed Iris: Local Accuracy 

What this metric provides is a glimpse of the range of reactions by individual pro
cessors to their assigned data sets. Again, we see the widest range of values for the 
maximum number of processors. We discuss this further in section 15.3.3. Figures 
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np Min. Ace. Max. Ace. Min MCs Max MCs 

1 73.00%(4.40) 73.00%(4.40) 279.04(10.11) 279.04(10.11) 

2 67.83%(6.20) 76.75%(5.39) 154.71(6.51) 162.73(6.20) 

4 60.62%(7.69) 82.40%(5.78) 83.33(3.94) 95.62(3.89) 

8 48.87%(9.87) 90.42%(7.05) 43.76(2.68) 55.85(2.39) 

16 30.33%(12.71) 99.40%(3.42) 22.73(1.53) 32.98(1.48) 

Table 15.5. Distributed Pima Diabetes: Local Accuracy 

np Min. Ace. Max. Ace. Min MCs Max MCs 

1 84.79%(8.15) 84.79%(8.15) 173.11(3.62) 173.11(3.62) 

2 70.64%(12.10) 86.99%(9.60) 88.66(2.02) 91.23(1.58) 

4 48.40%(18.25) 94.55%(10.64) 44.86(1.04) 47.39(0.63) 

8 19.62%(24.44) 100.00%(0.00) 22.39(0.65) 24.00(0.05) 

16 0.00%(0.00) 100.00%(0.00) 11.06(0.38) 12.00(0.00) 

Table 15.6. Distributed Sonar: Local Accuracy 

15.2, 15.3, and 15.4 present these accuracy measurements as log-linear graphs with 
3cr error bars, and figures 15.5, 15.6, and 15.7 present the memory cells results. 
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Fig. 15.2. Distributed AIRS: Iris: Accuracies (x-axis offset applied for visual clarity) 
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Distributed AIRS: Sonar: Accuracies (x-axis offset applied for visual 

Finally, figures 15.8, 15.9, and 15.10 provide the parallel performance of the dis
tributed version of AIRS on our three learning problems. 

Here we find solid parallel gains. We see inconclusive results Iris data set: it is simply 
too small and too easy of a classification task to gain much from the use of multiple 
processors. That is, the time to setup the communication fabric and distribute the 
data items to the individual processors is greater than the actual time to classify the 
data. However, for our other two data sets we continue to see runtime improvement 
through the use of our parallelization schemes. 
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Fig. 15.5. Distributed AIRS: Iris: Memory Cells (x-axis offset applied for visual 
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Fig. 15.6. Distributed AIRS: Pima Diabetes: Memory Cells (x-axis offset applied 
for visual clarity) 

15.3.3 Discussion 

The accuracy results presented above raise some potentially troubling questions 
about this distributed version of AIRS. The behavior exhibited is not surprising. An 
increase in the number of processing sites decreases the amount of data each site 
has available for learning. With fewer examples to learn from, the generalizations 
possible at the individual site are much more limited. That is, with a more incomplete 
picture of the world, each site's model of the world is also less complete. So, how 
then, should we view these results? Do they indicate that this approach is useless? 
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Fig. 15.7. Distributed AIRS: Sonar: Memory Cells (x-axis offset applied for visual 
clarity) 

-Iris 

- Pima Diabetes 

-Sonar 

Number of Piocessors 

Fig. 15.8. Distributed AIRS: Run Times (x-axis offset applied for visual clarity) 

One way of addressing these issues would be through a re-formulation of the ap
proach. Looking at tables 15.7, 15.8, and 15.9 and figures 15.11, 15.12, and 15.11 we 
find that the distributed version of AIRS is capable of classifying the training data, 
both at a global and at a local level. 

Since AIRS is a supervised learning algorithm, we could embody this knowledge 
somehow at each processing site. That is, each site can keep track of what type of 
data (i.e., what classes of data) it has been trained on and its individual performance 
on that data. This knowledge could then be used in a more global reaction sense. 
That is, when an individual site is asked to classify some piece of data, it could do so 
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Fig. 15.9. Distributed AIRS: Speedup (x-axis offset applied for visual clarity) 
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Fig. 15.10. Distributed AIRS: Parallel Efficiency (x-axis offset applied for visual 
clarity) 

while attaching a degree of confidence to that classification. This degree of confidence 
could be based on the data's similarity to the training data seen at that particular 
site as well as the individual site's abihty to classify that training data. The site 
could then pass on this confidence to other sites within the system. Basically, what 
we are proposing is that there could be more interaction among the processing sites, 
rather than the simple limited isolation in the current model. This approach would 
not be an attempt to reformulate a global memory cell pool presented in [Watkins 
& Timmis 2004]. Rather, we could begin to model local interactions, define areas of 
communication, and introduce concepts of a topology of reaction to a given test data 
item. This would allow certain sites to share information with other sites, which is 



344 Andrew Watkins 

np Global Ace. Min. Ace. Max. Ace. 

1 97.94%(0.99) 97.94%(0.99) 97.94%(0.99) 

2 98.47%(0.96) 97.59%(1.36) 99.36%(0.96) 

4 97.94%(1.20) 95.00%(2.72) 99.91%(0.54) 

8 97.74%(1.03) 92.71%(2.60) 100.00%(0.00) 

16 97.07%(1.00) 80.52%(6.99) 1Q0.00%(0.00) 

Table 15.7. Distributed Iris: Training Set Accuracy 

np Global Ace. Min. Ace. Max. Ace. 

1 76.47%(1.25) 76.47%(1.25) 76.47%(1.25) 

2 76.17%(1.21) 74.79%(1.63) 77.55%(1.44) 

4 76.01%(1.12) 73.41%(1.70) 78.65%(1.69) 

8 75.84%(1.30) 69.90%(2.67) 82.00%(2.67) 

16 75.22%(1.4Q) 63.07%(4.22) 85.68%(2.52) 

Table 15.8. Distributed Pima Diabetes: Training Set Accuracy 

np Global Ace. Min. Ace. Max. Ace. 

1 97.79%(1.12) 97.79%(1.12) 97.79%(1.12) 

2 96.72%(1.29) 95.67%(1.73) 97.77%(1.32) 

4 95.06%(1.50) 91.49%(2.74) 98.13%(1.59) 

8 93.68%(1.69) 86.05%(4.10) 99.37%(1.49) 

16 93.QQ%(1.74) 77.91%(6.25) 10Q.Q0%(0.QQ) 

Table 15.9. Distributed Sonar: Training Set Accuracy 

more akin to the biological model, while limiting the need for global communication, 
which is not as biologically plausible. 

15.4 Scalability 

This section presents scalabiHty tests of distributed AIRS. Our chief concern for this 
section is parallel performance. 
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Fig. 15.12. Distributed AIRS: Pima Diabetes: Training Set Accuracies (x-axis offset 
applied for visual clarity) 

15.4.1 Experimental Design 

To generate our datasets for the experiments varying the number and length of 
the input vectors, we utilized Powell Bendict's DGP-2 data generation program for 
inductive learning tasks [Benedict 1990]. This program is designed to produce syn
thetic data for testing learning algorithms. It allows the user to specify the number 
of features in each data instance, the amount of data, and the number of "peaks" 
(or centroids) to be used for the positive data examples. The program then gener
ates synthetic data with both positive and negative examples based on these user 
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Fig. 15.13. Distributed AIRS: Sonar: Training Set Accuracies (x-axis offset applied 
for visual clarity) 

parameters. For the experiments varying the number of training vectors, we kept 
the number of features constant at 64. For the experiments varying the number of 
features, we maintained the number of training vectors at 256. We did an average 
of 30 runs of 5-fold cross vahdation; so ni = n2 = 150. The number of test data 
items was relative to the number of training vectors such that T == ^ , where T 
is the number of test data items and N is the number of training data items. All 
experiments utilized the processor dependent, affinity-based merging scheme with 
a dampener value of 0.1. Again we performed 30 runs of 5-fold crossvalidation. We 
examined the parallel performance of distributed AIRS as we varied the number of 
training vectors and the number of features in these training vectors. 

15.4.2 Results 

Varying the Number of Training Items 

Figure 15.14 give the runtimes and Figures 15.15 and 15.16 provide the speedup 
and parallel efficiency measures on the simulated data for distributed AIRS when 
varying the number of training instances. The number of test data items is ^ . 
These experiments show that the distributed version of AIRS is scalable in terms of 
the number of training items used. We see that an increase in the number of training 
vectors increases the runtime, but this increase can be counteracted by an increase 
in the number of processors used. Interestingly, while we see very small runtimes 
for these experiments, we also find a high degree of variability as noted by the large 
error bars. In fact, for some of the runtimes there is no distinguishable difference 
between running the same dataset on more processors. Still, the general trend with 
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Fig. 15.14. Distributed AIRS: Run Times when Varying the Number of Training 
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these results is that an increase in processing power coupled with an increase in data 
size leads to scalable efficiency 

Varying the Number of Features 

Figure 15.17 give the run times and figures 15.18 and 15.19 provide the speedup 
and parallel efficiency measures on the simulated data for distributed AIRS when 
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Fig. 15.17. Distributed AIRS: Run Times when Varying the Length of the Input 
Vectors (x-axis offset applied for visual clarity) 

varying the length of the input vector. As with the results seen when varying the 
number of input items, we find that our distributed version of AIRS appears to 
scale well when increasing the number of features in the data set. The fundamental 
relationship between the runtime and the number of features has not changed. That 
is, with an increase in the number of features in the data set there is a corresponding 
increcise in the runtime of the system. 
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15.4.3 Discussion 

This section has demonstrated that our distributed version of AIRS is much more 
scalable in terms of the number of training items and number of features in the 
data set than was parallel AIRS. Results presented in [Watkins 2005] provide the 
global and local accuracy measures for these experiments along with the number of 
memory cells developed. As discussed in section 15.3.3, the interpretation of these 
"accuracy" numbers is somewhat problematic. However, what they do reveal is this 
continued sense of a local reaction. This lack of global interaction together with the 
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development of locally learned models and local reactions is much more biologically 
appealing. Couple this with the stable performance gains, and the distributed version 
of AIRS offers interesting areas of exploration. Still, one of the key issues that must 
be addressed is how to utilize these local reactions for solving real-world problems. 

15.5 Discussion and Conclusions 

This distributed version of AIRS presented in this chapter offers a basic alternative 
model to using multiple processors when compared to the parallel version [Watkins 
&; Timmis 2004, Watkins 2005]. While this model is undeniably faster, its useful
ness as a classifier is much more difficult to assess. One of the goals from using this 
approach was to remove the need for global interaction that was present in previous 
parallel versions. By doing this, we begin to explore the distributed concepts exhib
ited in biological immune systems. However, this also possibly limits the predictive 
capabilities of the system. This distributed design presented here is, admittedly, lim
ited in scope. It removes all interactions among processing sites in the development 
of individual miniature world views at each site. One way of extending this work 
and recapturing some of the predictive capabilities of AIRS would be to allow for 
communication among the sites. While all of the interaction in our parallel model 
occurred on a global level, we could develop more local interactions. In this way we 
could begin to simulate cell recruitment and the diversity of reactions seen in the 
biological system. While this again may impact our overall runtime, it may offer us 
more insight into our learning task. 

Another key aspect that this distributed approach could allow us to investigate is 
that of emergence. Much of the field of immune-inspired learning has focused on the 
engineering of desired behavior into the given system. If what is needed is a clas
sification algorithm, then the biological metaphors are manipulated or engineered 
to provide this behavior. However, this is counter-intuitive to the development of 
the biological system itself. Within the immune system the properties that com
puter scientists find so attractive are in fact emergent properties of the system as 
a whole. It is through the distributed, diverse reactions of the system that the cog
nitive capabilities of learning emerge. A distributed approach to learning with local 
reactions leading to global interaction can provide a truer path to exploring ways 
that these attractive characteristics evolve and emerge apart from the a priori intent 
engineered into such a system. Or, as Stepney discusses, it is through the interaction 
of our systems embodied within a particular environment that allows the richness 
for the emergence to appear. 
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Summary. The theory of nonlinear dynamical systems is reviewed, with the aim 
of showing that it has a range of useful tools to offer to both immunologists and 
computer scientists. The theory is illustrated with a simple model for the interaction 
of B cell clones, namely the B-model of Perelson and Weisbuch. A simple model 
is provided for the dynamics of an artificial immune response, and this is analysed 
using optimal control theory. A new model for the interaction of signalling molecules 
(cytokines) with immune cells is also outlined. 

16.1 Introduction 

Mathematical modelling plays an essential role in theoretical immunology. When
ever one wishes to make quantitative statements about the response of the immune 
system to antigens, mathematics is the language of choice. Nonlinear dynamical sys
tems [Haken & Mikhailov 1993, Ott 1993, Peitgen & Richter 1986, Scott 1999], and 
especially systems of nonlinear differential equations [Hone 2005, Jordan & Smith 
1999], are ubiquitous in the physical sciences, and they have also been applied very 
successfully in population biology and ecology to describe the growth and spread of 
plant and animal populations [Murray 1990]. This approach, employing nonlinear 
differential equations, has further been used to model the interactions of populations 
of lymphocytes with virus or antigen populations [Perelson & Weisbuch 1997, Nowak 
Sz May 2000]. Other examples of dynamical systems applied to immunology range 
from mathematical models of immune receptors [Goldstein et al. 2004], to the re
sponse of B and T cells from the viewpoint of optimal control theory [Kepler & 
Perelson 1993, Perelson et al. 1976, van den Berg &: Kiselev 2004], to stochastic 
differential equations in the description of immunosenescence [Luciani et al. 2001]. 
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The emerging field of artificial immune systems, as described in Chapter 3 by Timmis 
and Andrews, has been inspired by mathematical models of immune interactions, 
and in particular network models of lymphocyte populations (see for example [Perel-
son 1989], references in the review [Perelson & Weisbuch 1997], as well as Chapter 
4 of this book by Lee and Perelson). Jerne introduced the notion of an idiotypic 
network of immune cells that are able to recognize one another as well as antigen 
[Jerne 1974]. In [Farmer et al. 1986] it was suggested that the adaptive responses 
of immune networks might provide useful paradigms for machine learning. Subse
quently, immune network algorithms [de Castro & Timmis 2003, Timmis Sz Neal 
2001] were based on the idea of replacing nonlinear differential equations with anal
ogous discrete or iterative schemes, together with the inclusion of stochastic effects 
due to mutations. Many other artificial immune system algorithms, such as CLON-
ALG [de Castro & Von Zuben 2002], were based on simplified mechanisms for clonal 
selection. In the mean time, Jerne's idiotypic network theory had already been dis
credited by some immunologists [Langman & Cohn 1986]. However, the biological 
implausibility of a theoretical model does not necessarily preclude its usefulness in 
a computational context. 

The aim of this chapter is threefold. Firstly, we believe that mathematical analysis, 
and in particular the theory of dynamical systems, has a whole host of useful tools 
and concepts to offer to two very different communities: immunologists and computer 
scientists. By translating abstract processes into precise mathematical models, it 
should become much easier to decide exactly what the natural immune system has in 
common with an artificial immune system (AIS). Thus in the next section we aim to 
give a brief introduction to the basic notions and methods required for analysing and 
interpreting nonlinear systems. Secondly, mathematical models of immunological 
processes can be adapted to AIS in order to provide objective measures of their 
performance, and further to work out how they can best be controlled. In order 
to address the latter, we aim to provide a simple model for the dynamics of an 
artificial immune response, and indicate how this can be analysed using ideas from 
optimal control theory [Jacobs 1996, Pinch 1993, Kirk 1997]. Thirdly, AIS have been 
inspired by abstract models of immunological processes, so in the fourth section we 
aim to provide further inspiration for computer scientists by outlining a new model 
for the interaction of signalling molecules (cytokines) with immune cells. In turn, 
this cytokine network model could also provide insights for biology. 

From the comparison of our second and third aims it is clear that mathematical 
models can play a dual role in the development of AIS algorithms: on the one hand, 
as suitable tools for analysing and improving their performance; and on the other, 
as iterative dynamical processes from which the actual algorithms can be built. The 
distinction between these two roles is not always clear cut. In our concluding section, 
we discuss whether one role might be more appropriate than the other. 
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16.2 Mathematical Preliminaries 

Continuous dynamical systems usually take the form of a system of coupled first 
order ordinary differential equations (ODEs), 

X2 = F2(t,a;i ,a;2, . . • ,XN), (16.1) 

XN = Fiv(t,a;i,a:2,...,Xiv). 

The dot above a letter denotes the derivative d/dt, so xi is ^ , and so on. The 
above system describes the rate of change of each of the quantities xi, X2,. . . ,XN 
with respect to the continuously varying parameter t, which in most applications 
corresponds to time. Given a specific system in the form (16.1), our goal would 
then be to solve for each of the functions Xj{t), j = 1 , . . . , iV. (If we also want to 
consider how these quantities vary in space, then we need to consider systems of 
partial differential equations; these will be touched on very briefiy in section 16.4.) 
In order to describe generic systems, it will be convenient to introduce the state 
vector 

X2 

\XN / 

which allows us to rewrite the system concisely in vector form, as 

x = F(^,x), 

with F( t ,x) being the column vector given by 

F2 

(16.2) 

\FN) 

In the generic case, we have no hope of obtaining an explicit analytical solution of 
a nonlinear system of the form (16.1). If the state vector x(0) is given at time t — O 
then it is natural to consider the initial value problem: how does the state vector 
x(t) evolve for ^ > 0? In general, if we want to get numerical answers, then we 
must resort to numerical integration methods (e.g. Runge-Kutta methods [Burden 
k, Faires 2005, Kincaid & Cheney 2002]), which replace the differential equation 
(16.1) with a system of finite difference equations that approximate the change in 
the state vector for a small time step At. Another alternative is to use Gillespie's 
algorithm [Gillespie 1977], which makes direct use of discrete stochastic dynamics 
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in order to solve differential equations. Note that, very often in the natural sciences, 
the deterministic equations themselves can be regarded as an approximation to an 
underlying stochastic process. There is no reason why the underlying process we are 
trying to model should not be thought of as being fundamentally discrete rather 
than continuous, or ultimately stochastic rather than deterministic, and thus we 
need not only regard numerical schemes as being approximations: they can be valid 
models in their own right. However, continuous systems are more convenient from a 
mathematical point of view, since the assumption of continuity allows a great deal 
of analytical machinery and exact solution methods to be applied. In the rest of this 
section we will review some of the techniques that can be used to obtain qualitative 
and quantitative information about continuous dynamical systems. 

16.2.1 Linearization and steady states 

Although most systems of interest are nonlinear, it is useful to start by considering 
homogeneous linear systems, which can be written in matrix form as 

X = M x , (16.3) 

where M is an iV x iV constant matrix (independent of time). This is just a special 
case of (16.2), obtained by choosing F(t, x) to be the linear function F = Mx. (More 
generally, we could consider the linear function F = M x + c for some constant vector 
c, but for nonsingular M this would be equivalent to (16.3) upon transforming the 
state vector as x == x —M~^c). What characterises linear systems? From a practical 
point of view, the main feature of the system (16.3) is that the output is directly 
proportional to the input. From a theoretical point of view, the main point is that 
any linear combination of solutions is also a solution, so that the solutions form a 
vector space. Homogeneous linear systems like (16.3) that are autonomous - so that 
t does not appear explicitly on the right hand side - can also be solved explicitly. 

The exact solution of the initial value problem for (16.3) is 

x ( t ) - e x p ( M O x ( 0 ) , (16.4) 

and from this solution it is immediately clear that the output x(t) at time t is 
proportional to the input x(0) at time zero. However, as it stands the formula (16.4) 
does not give us much specific information about the behaviour of the system for 
large t. The way that the solution changes with time depends on the matrix M, 
or more precisely on its eigenvalues, which govern how the system will ultimately 
behave. The matrix M is said to be diagonalizable if it can be transformed into 
diagonal form, with all non-zero entries appearing along the diagonal. More precisely, 
if M is diagonalizable then we can find an invertible matrix U such that 

A - U M U - ' = diag(Ai, A2, . . . , Aiv) 

is the diagonal matrix formed by the eigenvalues Xj of M, which are the roots of 
the characteristic polynomial det(M — AI) of degree N, with I being the N x N 
identity matrix. (Some matrices M are not diagonalizable, but they still have a 
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Jordan normal form which is as near as possible to being diagonal, but contains 
some non-zero off-diagonal entries [Cohn 1994].) If we transform to the variable 
y = U x then the system (16.3) becomes 

^ = Ay = ^ y(t) = exp(ylt)y(0). (16.5) 

The point of this linear transformation of the state vector is that the equations for 
the components of 

2/2 

\yN/ 

decouple from each other, and from (16.5) these components depend on t according 
to 

In general the eigenvalues Xj of matrix M are complex numbers, so yj can be complex 
even if the original state vector x is real. Thus, in general, we can say that as 
t —> oo, the components corresponding to eigenvalues with ReA^ > 0 will diverge 
in amplitude, while the components whose eigenvalues satisfy Re Xj < 0 will decay 
to zero. So it is clear that the eigenvalues of the matrix M determine the ultimate 
growth or decay properties of the state vector in a linear system. In particular, only 
when all components decay to zero does the system ultimately come to rest at a 
stationary point (the origin). This fact will be very important as we now move on 
to consider nonlinear systems. 

As already mentioned, for the typical nonlinear system (16.2) we do not expect to 
have any form of exact solution at our disposal, and we must resort to numerical 
integration if we want to solve the associated initial value problem for the evolution 
of the state vector x(t). However, we can get a good qualitative idea of the range 
of possible behaviours of the system by finding the steady states and performing 
linearization around them. For the sake of simplicity let us consider an autonomous 
system, where the function F on the right hand side of (16.2) is independent of t, 
so we have 

x = F(x) . (16.6) 

The steady states are the values of the state vector that make the right hand side of 
(16.6) vanish, so to find them we must solve the system of equations 

F(x) - 0. (16.7) 

Given any solution vector x for (16.7), it is clear from (16.6) that if we start from 
the initial state x(0) — x, then we must have x(t) = x (constant) for all ,̂ so if the 
system starts at a steady state value then it remains there in equilibrium (hence the 
name). 

What does a nonlinear system look like in the neighbourhood of one of its steady 
states? Assuming that the vector function F(x) is differentiable, we can calculate the 
matrix of its first partial derivatives. This NxN Jacobian matrix M has components 
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OXk lx=x 

Let us write x(t) = it + S{t) and suppose that the magnitude of the perturbation 
vector S is small so that the state x is near to the steady state x. If we look at the 
components Fj(x) of the vector F(x) near any point x, then we can calculate their 
Taylor expansions in the form 

tl ^̂^ ̂ ^=^ 
where the dots correspond to terms of quadratic or higher degree in Sk, which are 
the components of S. However, by the steady state assumption (16.7) we know that 
each component Fj{k) = 0, and so substituting for x in (16.6) and applying Taylor's 
theorem to the function F(x) implies that the perturbation away from x satisfies 

S = MS + o{S) (16.8) 

where o{6) denotes a small quantity such that |o((5)|/|<5| —> 0 as ^ -^ 0. Thus the 
equation for small perturbations is approximately linear, i.e. 

6^ MS. 

It follows from the foregoing discussion of linear systems that if all the eigenvalues of 
the matrix M associated with the point x satisfy Re Xj < 0, then these perturbations 
will decay exponentially to zero; so if the state vector starts near to this steady state 
then 

x(t) -^ X as t —^ oo. 

The above condition means that the steady state x is asymptotically stable (see e.g. 
[Jordan & Smith 1999], p.289 for a definition). If, on the other hand, we are in 
the exactly opposite situation that ReA^ > 0 for all j , then clearly the system will 
diverge away from the steady state, so the assumption that S is small in magnitude 
will cease to hold and the linear approximation will break down. In the latter case, 
the steady state x is called an unstable node. Between these two extremes there are 
all the possible combinations of signs for the real parts of the eigenvalues, and each 
of these combinations corresponds to a different kind of unstable behaviour. 

The A/"-dimensional space of possible values for the state vector x is known as the 
phase space. Usually the phase space is R^ or some subregion therein. From the 
above analysis of the nonlinear system (16.6) it is apparent that the approximate 
shape of the trajectories of x(t) in phase space is determined locally (near a steady 
state) by the eigenvalues of the associated linearized system. It is possible to patch 
together the whole phase space by gluing together the different neighbourhoods of 
each steady state, but this becomes gradually more complicated as the dimension 
N and the number of different steady states increases. 

The simplest non-trivial situation is when there are two state variables, so N = 
2, and in that case the system evolves in the phase plane. Yet even in the two-
dimensional case there are various different types of possible behaviour near a steady 
state. For a real system with N = 2 there are two eigenvalues, Ai and A2, and 
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Eigenvalues: 

ReAi > 0 , ReA2 > 0 : 

ReAi < 0 , ReA2 < 0 : 

ReAi > 0 > ReA2: 

R e A i = 0 = ReA2: 

Real Xj 

unstable node 

stable node 

unstable saddle 

— 

Complex Xj 

unstable spiral 

stable spiral 

— 

centre 

Table 16.1. Classification of steady states in two dimensions. 

these can either be both real with all possible combinations of signs, or a complex 
conjugate pair with ReAi = ReA2. In Table 1.1, we have classified the main types 
of steady states in two dimensions, in terms of the eigenvalues (up to permutation), 
indicating whether they are stable or unstable. Note that we have omitted certain 
special cases, namely degenerate nodes (stable/unstable), that occur when Ai — A2. 
These degenerate cases, and also centres, for which ReAi = ReA2 = 0, lie on the 
boundaries between the other cases given in the table. These cases are non-generic 
and they do not persist if the parameters in the system are slightly altered. In fact a 
centre is neutrally stable in a linearized system, but for the corresponding nonlinear 
system it is usually either an absorbing or a repelling state. This discussion of steady 
states is best illustrated by the concrete example that follows, namely the B-model 
for interacting populations of B cells. 

16.2 .2 A n e x a m p l e : t h e B - m o d e l 

As a simple example of a nonlinear system, we consider the B-model (see [Perelson 
& Weisbuch 1997]), which is a system of ordinary differential equations used to 
describe a network of B cell clones that are able to recognize and respond to one 
another, as well as to the presence of antigen. The equations can be written in the 
form 

X = me + (pf (x) - c/)x. (16.9) 

The constant m is a source term corresponding to continual production of new cells 
in the bone marrow, multiplying the constant vector 
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1 

while the constant parameters p and d correspond to the proHferation rate and 
death rate respectively. The N components of the state vector x correspond to the 
populations Xj of each of N different clone types, j = 1,... ,Nj and the nonlinearity 
is encoded in the matrix 

f(x) = d i a g ( / ( / i i ) , / ( / i 2 ) , . . . , / ( M ) 

which depends on the quantities 

N 

hj = 22 "^3^ f̂c 3 = ^^"",N 
fc=i 

(with the constant matrix Jjk specifying the strength of the interaction between the 
clones), via the activation function / , which is given by the formula 

for suitable parameters Oi and O2 with 62^ Oi > 0. (The notation " > " is used to 
mean "of a larger order of magnitude than" here and in what follows.) 

For our purposes, it will be sufficient to consider the case where there are only 
two clone types, and following Perelson and Weisbuch (see [Perelson & Weisbuch 
1997], p. 1238) we choose the interaction matrix in the form J12 = 1 = J21 and 
J i i = 0 = J22, so that hi = X2, h2 = xi, and the system has the form 

xi = m +xi{pf(x2) — d), (16.11) 

X2 = m +X2(pf{xi) — d). (16.12) 

Further analysis of the two coupled equations (16.11) and (16.12) shows that in 
general (for a relevant range of parameter values) there are five steady states in 
this two-dimensional system. Due to the permutation symmetry xi <-> X2, these can 
be divided as follows: three states for which xi =0:2, that correspond to the three 
numbers V,L,H with H » L » V (for typical parameter values), which are the 
roots of the equation 

m 4- x{p f(x) — d) = 0 

(equivalent to a cubic), giving the steady states {x\,X2) = iV^V), {L,L), {H,H); 
and a pair of states (a;i,X2) = {L,H) and {H,L) which satisfy 

m + L{pf{H) -d) = 0 = m + H{pf{L) - d). 

For small values of the parameter m, we have L ^ L and H ^ H, and henceforth 
we shall drop the hats, assuming that this approximation holds. The "if" and "L" 
stand for "high" and "low" respectively, since receptors of type 1 clones are supposed 
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Fig. 16.1. Part of the phase portrait for the system of two coupled equations (16.11) 
and (16.12), plotted on the logarithmic scale x = Inxi , y = \nx2 for the two clone 
types. (For parameter values, see main text.) 

have high affinity for a particular antigen, while type 2 clones have low affinity. (The 
interaction with antigen is not yet included; see (16.16) and (16.17) below.) 

By considering the eigenvalues associated with each steady state of the B-model, it 
is possible to show that both (L, L) and {H, H) have one positive and one negative 
eigenvalue, so (from Table 1.1) we see that these states are saddle points and hence 
unstable. Similarly, (L, H) and (H, L) are stable spirals (having a complex conjugate 
pair of eigenvalues with negative real parts), and similarly (V^V) is a stable node, 
so these latter three steady states are attractors. Taking the terminology of [Perel-
son & Weisbuch 1997], the attractor {V,V) is called the virgin state, while {H,L) 
and {L,H) are called the immune and tolerant states respectively. Their attracting 
behaviour is best appreciated by looking at Figure 16.1, which portrays the phase 
paths of the system with parameter values 

d = 0.5, p=l.O, m - 1 . 0 x l O " ^ 6>i = 2.0 x 10^ 6>2 = 1.0 x 10^ (16.13) 

In fact Figure 16.1 shows part of the phase portrait of the system plotted on a loga
rithmic scale, so the x-axis corresponds to Inxi and the y-axis corresponds to In 0:2. 
The MAPLE package DEplot has been used here to solve the system for a range of 
different initial conditions in the range 6 < x < 14, 6 < ?/ < 14, and the direction of 
the trajectory at each point is represented by an arrow whose length corresponds to 
the magnitude of the vector field x = (x, y)^. This allows an immediate appreciation 
of where the steady states lie in the phase plane, and the directions of the arrows 
around them indicates whether they are stable or unstable (attracting or repelling). 
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Observe that Figure 16.1 contains four of the steady states - the two spirals and two 
saddles are clearly visible - but the (V̂ , V) state is off the scale. 
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Fig. 16.2. Time evolution of two B-cell populations and one antigen in the B-model, 
plotted on a logarithmic scale with \n{Population) on the vertical and time t on the 
horizontal. The upper oscillation (full curve) is clone type 1, with clone type 2 plotted 
with circles, while the lowermost (dotted) curve corresponds to antigen population. 
(See text for details of parameters.) 

The behaviour of the B-model becomes more interesting in the presence of antigen. 
With two clone types and one population of an antigen A{t), which is eliminated by 
the response of cells of type 1, we can write down the system 

xi - m + xi{pf{hi) - d), (16.14) 

^2 - m + X2{pf{h2) - d), (16.15) 

A=:~kxiA, (16.16) 

where 
hi = Zx2 + JA, h2 = xi, (16.17) 

for suitable parameters k, Z, J. The parameter A: is a decay rate, while Z and J de
termine the strength of the stimulation of clone 1 by clone 2 and antigen respectively. 
It is clear from the third equation (16.16) that clone 1 responds to the presence of 
antigen and removes it at a rate proportional to its population. 

From the form of the three-dimensional system (16.14), (16.15), (16.16) we see that 
to have the steady states we require ^ = 0, and then the steady state population 
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values are the same as for the two clone system uncoupled to antigen. So the analysis 
of steady state values is almost identical to that for the two-component system 
(16.11), (16.12), with three attractors that can be referred to as the virgin, immune 
and tolerant states respectively, corresponding to three different stable stimulation 
regimes for the B cell clones that have been exposed to antigen. In Figure 16.2 we 
have plotted a numerical solution of the time evolution for the two clone system 
with antigen, where the parameters and initial conditions were chosen as 

A: = 1 . 0 x l O " ^ Z = 3.0, J = 0.9, a;i(0) = 20, X2(0) = 20, A(0) = 5000, 

with the other values being the same as in (16.13). 
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Fig. 16.3. Phase plane dynamics of two B cell populations in the B-model with 
antigen, corresponding to the time evolution in Figure 16.2. The clone populations 
are plotted as x = \nxi, y — \nx2-

Note that in the Figure (16.2), which is plotted on a logarithmic population scale, 
the population of xi rises very rapidly at first due to the presence of antigen, while 
the population of type 2 clones drops initially, before these two fall into a synchro
nized pattern of oscillations. The antigen population, on the other hand, decreases 
gradually before starting to drop very rapidly until it is effectively eliminated (when 
it becomes vanishingly small). Although the ultimate fate of the two B clones ap
pears to be a periodic oscillation, in fact this oscillation is decaying in magnitude 
(very slowly on the response timescale) and tending towards a steady state of the 
form {H,L) with H » L (an immune state). (To see that this state is really a 
stable spiral, it is necessary to calculate the eigenvalues which are found to have 
a small negative real part, hence a slow decay rate, cf. Table 1.1.) The state is so 
called because if antigen were presented to the system again then the elevated level 
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of type 1 clones would cause a very strong and rapid immune response to eliminate 
the corresponding pathogen (and hence its associated antigen would be removed). 
The oscillation can be seen in a different way from the phase plane plot of lna;i 
against In 0:2 (Figure 16.3), where the loop corresponds to the decaying oscillation 
towards the point {H,L). 

For a full discussion of idiotypic network models, in particular the response mecha
nism for more than two clone types and the comparison between immune, tolerant 
and virgin states, the reader is referred to the review [Perelson Sz Weisbuch 1997]. 
For a survey of other models of B cell and T cell receptors, we refer the reader 
to Lee and Perelson's contibution to this volume (Chapter 4). In the next section 
we change gear and describe how to model an artificial immune response from an 
optimal control viewpoint. 

16.3 Dynamics of an Artificial Immune Response 

An artificial immune response is a process (or more properly: a runnable) operating 
on data structures. A key concern is how well the AIS executes these operations 
relative to the computational resources allocated to it. This relative performance or 
specific efficacy informs higher-level decisions: for instance, should a more efficacious 
process become available, the artificial immune response in question might be halted, 
while otherwise the allocation of resources must be adjusted to the specific efficacy 
to ensure that the required operations are achieved to a given standard, or within a 
given timeframe. Such considerations of efficacy and time horizons are critical to the 
ability of the artificial immune response to contribute meaningfully to the proper 
embodiment of the system deploying this response; this is discussed in more detail 
by Stepney, in Chapter 12 of this book. 

In this section we analyse the performance of an artificial immune response using a 
system of ODEs. The state variables are a;, the computational resources allocated 
to the artificial immune response, ?/, the job load, i.e. the amount of data awaiting 
operation by the AIR, and z, the computational resources allocated toward improve
ment of the AIR's specific efficacy. The target data are data structures upon which 
the response operates. The analysis will focus mostly on the variables x and y, and 
on the {x,y) phase portrait. 

This mathematical set-up is considerably idealized. First, computational resources 
allocated to the AIS or processes aimed at improving its specific efficacy may take 
various different forms: executor (CPU time) as well as different types of memory 
space. Taking this diversity into account would require x and z to be replaced by 
four or more state variables; but for our present purposes it will suffice to discuss 
only the simplest situation. 

Second, the variables x and z are real numbers representing the fraction of CPU 
time allocated to the artificial immune response. Strictly speaking, one would only 
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expect either a; = 1 or x = 0 to be true at any point in time t, according to whether 
or not the CPU is devoted to the artificial immune response at time t. However, 
letting x{t) denote this Boolean {x G {0,1}), and defining 

x{t) = / x{s)ds (16.18) 
Jt-T 

it is reasonable to treat x as a real value in the interval [0,1] if the constant T is 
chosen large enough. One could think of a; as the propensity of the scheduler to award 
CPU time to the artificial immune response. (More generally, one could consider a 
large number of parallel processors, and then x{t) would denote the fraction of 
these devoted to the artificial immune response at time t.) We are interested in the 
evolution of the performance of an AIS as it develops and ultimately resolves. This 
dynamics generally takes place on a time scale much longer than T; we call this 
longer time scale the response time scale. The state variable z is interpreted in the 
same way as x. 

16.3 .1 D y n a m i c s of t h e j o b load 

In this subsection we concentrate on the interaction between the resources allocated 
and the job load, i.e. between x and y, with the possible eff'ect of z being ignored. 
On the response time scale, we model the dynamics of the job load by means of an 
ordinary diff'erential equation: 

y = G{x,y,t)-R{x,y,t) (16.19) 

where the dot indicates the derivative with respect to time t. The term G > 0 
represents the increase ("growth") of the job load, the term — i^ < 0 its decrease 
due to the actions of the immune response. Now one could specify a particular 
diff'erential equation for the rate of change x, and then consider the dynamics of 
this equation coupled with (16.19), but this is not the approach to be adopted here. 
Instead, we will follow the approach of optimal control theory [Kirk 1997, Pinch 
1993], and try to solve the following problem: what is the best way to vary x{t) with 
time t in order to ensure that the job load y{t) eventually decreases, subject to the 
differential equation (16.19)? 

Of central interest is the specific efficacy of the response: 

, .deiR{x,y,t) / i«on\ 
r(x,y,t) = —̂^ (16.20) 

X 

which tells us how well the response performs per unit computational resources 
allocated. Since some of the activities associated with the response involve scanning 
and evaluating data, r must depend on y. We define a maximum specific efficacy rmax 
and a saturation factor / , as follows: 

r„,ax(a;,t)='sup{r(a;,2/,<)} and f{x,y,t)''^' r{x,y,t) ^^^ ^i) 
2/>0 ''^maxv^)^/ 
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The saturation factor / is a dimensionless quantity in the interval [0,1]. Any rea
sonable model of this saturation factor must satisfy 

lim f{x,y,t) = 0; (16.22) 

this is equivalent to \imy_Q+ R{xy y, t) = 0, so there is no response for a zero job 
load. In many cases one expects that / increases monotonically with y; a generic 
model that follows from quite general arguments derived from queuing theory [van 
den Berg & Kiselev 2004] is as follows: 

f{x,y,t)^f{y,t) = j ^ ^ . (16.23) 

The variable q{t) > 0 expresses the quality of the response: for large q, f will be close 
to 1 even for low y values. (Note that in equation (16.23), / does not depend on x.) 
The quality q(t) usually increases in the course of an AIS response, a phenomenon 
analogous to affinity maturation in biological immune responses. 

Let us make the following two assumptions about this process of response matura
tion: 

rmax(a;,t) ~ Fmax and f{y,t) ^ f{y) as t ̂  oo. (16.24) 

These assumptions mean that, in the latter stages of the response, rmax(a:,t) no 
longer depends on x or t (the response is asymptotically attaining a locally optimal 
specific efficacy) and the saturation factor depends on y alone (e.g. in terms of 
equation (16.23), the quality q likewise tends to some final value q). Furthermore, 
we consider two possible cases for the eventual behaviour of job load growth: 

either (i) G{x, y, t) -^ G, or (ii) ^^^^^'^-^ -> g. (16.25) 

Case (i) corresponds to an ultimately stationary external input, while case (ii) cor
responds to cases where the target data are 'autocatalytic', that is, tend to spawn 
further target structures at an intrinsic growth rate 'g. In the absence of a re
sponse, targets would grow linearly with t {y{t) ~ Gt) in case (i), and exponentially 
{y{t) ^ cexp{'gt), for c constant) in case (ii). In fact for case (i), the asymptotic form 
of equation (16.19) is 

yr^G-rm.J{y)x, (16.26) 

while in case (ii) the equation becomes 

yr^gy- frm.x7{y)x. (16.27) 

The response is successful if we have y < 0 in the final stage (i.e. as t —> oo). This 
implies a condition of the form x{t) >x for large t; the quantity x is the minimum 
surveillance level, which is of considerable interest, since this is the allocation that 
the job will require in perpetuity. In case (i), we either have x = 0, when G = 0, 
or we can define a tolerance level y (i.e. a maximum allowable load), and then the 
minimum surveillance level is given as 

J \y}' max 
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which shows that x > G/rmax- When G > 0 we cannot take y as small as we please, 
since x -^ oo as y -^ 0'^, cf. equation (16.22). Thus, total "eradication" is ruled out. 
By contrast, we find for case (ii) that total "eradication" is possible provided the 
condition lim^^o+ vl fiv) < +oo is satisfied. For the queing model, equation (16.23) 
this limit equals 1/q, and we find that the minimal surveillance level (to ensure that 
2/ < 0) is given by 

reflecting the balance between p, the target's intrinsic tendency towards growth, and 
the quality of the response, expressed in the values of rmax and q. For saturation 
curves described by f{y) = {qy)^/{l + (qy)^) with a Hill coeflftcient /i > 1, y/f{y) 
tends to infinity as y tends to zero, and "eradication" is impossible. 

Fig. 16.4. The (x^y) plane for case (i). The plane is divided into a "safe'' region 
(above the curve) where y < 0, and an "unsafe" region where y > Q. The dotted 
vertical line corresponds to x = G/Tmax, and here we have set G/r-max — 2, q = 2. 
When X is kept at a constant level x, the phase paths converge towards the point 
ix^y), as indicated by the arrows. The horizontal line is y — y, where y is the 
tolerance associated with x. 

These various possibilities are illustrated in Figures (16.4), (16.5) and (16.6). The 
first of these shows the {x,y) phase plane for case (i), with saturation model 
f{y) = Qy/i^-^QV)- The regions where y > 0 and y <0\\e respectively below/above 
the curved line (a hyperbola). When we fix x at any value greater than the infi-
mum G/fmax, the job load tends to the value that marks the boundary between 
these two regions, and the associated steady state clearly is stable. 
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Fig. 16.5. The {x,y) plane for case (ii). The plane is divided into a "safe" region 
(between the dotted line and the thickened section of the x-axis) where y <0, and an 
"unsafe" region where y > 0. Arrows show the directions of phase paths that result 
when X is slowly decreased. The saturation function is f{y) — 'qy/{l +qy)? and here 
we have set 'q = 2 and 'g/rmax = 2. 

The situation is different in case (ii), illustrated by Figures (16.5) and (16.6). In 
Figure (16.5), the saturation model is again f{y) = qy/{l -\-qy)' The boundary of 
the region where y < 0 now has a stable and an unstable branch. The (thickened) 
stable branch is the part of the x-axis where x > 'g/(rmaxq)j and the (dotted) 
unstable branch is the remainder of the boundary, a straight line in the interior of 
the plane, corresponding to the equation 

7{y) 
(16.29) 

Fixing X at any value greater than ^/(rmax^) does not guarantee a successful res
olution of the response. Rather, the primary objective is to ensure that the phase 
point is in the safe region where y < 0; x can then be gradually reduced as the 
phase point tends to an asymptotic value somewhere on the stable branch. For the 
class of saturation curves f{y) = {qy)^/{l + (qy)^) with /i > 1, illustrated for /i — 2 
in Figure (16.6), the unstable branch lies in the interior of the phase plane; the 
branches meet at an x-value greater than ^/(rmax^), and equation (16.29) describes 
a stationary steady state when y < {h — ly^^/q. 
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Fig. 16.6. The {x,y) plane for case (in). This is as in the previous figure, but with 
saturation function f{y) = (qy)^/{l + (qy)^). The "safe" region, where y < 0, is 
to the right of the dotted and undotted boundary curve. The unstable (dotted) and 
stable (undotted) branches of this boundary curve point meet at an x value which is 
larger than 'g/irmax'q); the latter value is marked by a box on the x-axis. 

16.3.2 Dynamics of response allocation 

In the biological immune system, x corresponds to the numbers of various effector 
lymphocytes. An increase of these numbers is due to cellular proliferation (clonal 
expansion), and as the rate of cell division cannot become arbitrarily large, ^ \nx{t) 
will be bounded above. Such dynamic constraints are of great importance in the 
dynamics of biological immune responses [van den Berg &; Kiselev 2004]; in an AIS, 
however, they need not be nearly as prominent, and we can allow the dynamics of x 
to contain weighted Dirac pulses (i.e. 'jumps' of any desired magnitude). 

The basic problem then is how to choose a trajectory x{t). We first consider an 
approach that is naive, but instructive. Given y{t), define 

def 
^ W = {(^,2/)e: :y<o} (16.30) 

i.e. 7l{t) is the "safe region" at time t. The idea is to keep the phase path in the safe 
region 71. This region varies with time; it tends to expand as the quality parameters 
^max and q improve, although variations in the job load growth rate may cause it to 
shrink as well. The points (x,y{t)) with x G M"̂  constitute an horizontal fine L{t) in 
the phase plane. Now consider the set of points that lie in the intersection 7Z{t)UL{t), 
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and let Xmin{t) denote the infimum of the aj-coordinates of these points. We can 
assume that y < 0 for all x{t) > Xminit) at any time t (although this assumption 
may not be warranted when there are mutually inhibitory interactions between the 
processes that share the allocation x{t)). Then we propose the following dynamics: 

x{t) = Xmin{t) + e{t) (16.31) 

where €{t) denotes the safety margin at time t. 

For case (i)-type dynamics of the work load, the safety margin may be adjusted to 
satisfy the condition that y{t) <y as t -^ oo, for instance: 

e = X{y-y)e (16.32) 

where A is a positive parameter and £:(0) > 0 (other schemes, e.g. PID-control [Kirk 
1997], are possible). For case (ii)-type workload dynamics, we may take €{t) = £ or 
€{t) = e + {eo — e) exp{—At} where e and £0 are positive parameters. The dynamics 
(16.31) and (16.32) ensure that the phase path stays inside the safe region with a 
minimum expenditure x, while observing a safety margin to keep the state {x,y) 
away from the unstable boundary of IZ. 

Next, we sketch an analytic design approach to choosing x{t). Let ^{x) denote the 
cost of the allocation toward responders. Accounting for the (presumably desirable) 
effect of the response, we have two terms: 77(2/), denoting the cost of having a job 
load y; and 'd{w), denoting the cost of jobs accomplished so far, where 

rt 
w{t)=^ R(x{s),y(s),s)ds (16.33) 

Jo 
(this latter cost is typically a negative cost i.e. a benefit). The rj term dominates if the 
response is supply-driven^ that is, if failure to operate on the data represented by y 
has adverse consequences, whereas the 'd term dominates if the response is demand-
driven, that is, if the accomplishment of operations yields beneficial effects to the 
system. The natural immune system would appear to be predominantly supply-
driven, but demand-driven situations may be equally relevant for AIS. In general, 
both terms may be present. Finally, let C(^) denote the cost of the allocation toward 
response improvement (that is, for carrying out "affinity maturation" sensu lato). It 
is assumed that a commensurable cost scale can be found, applicable to all variables. 
Then x{t) and z{t) are chosen to minimize the cost functional J , defined by 

j-fe' 
/•CO 

/ {^{x{t)) + v{y{t))+nw{t)) + a4t)))dt. (16.34) 
Jo 

According to optimal control theory [Kirk 1997, Pinch 1993], the pair {x{t),z(t)) 
that minimizes J is found by minimizing a certain Hamiltonian H with respect to 
X and z at each moment t. This Hamiltonian is defined by 

H{t) ^^' Y{t) {G{x, y, t) - R{x, y,t)) + W{t)R{x, y, t) 

[i{x{t)) + v{y{t)) + d{w{t)) + C(^(t))} (16.35) 
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where the co-state variables Y{t) and W{t) obey the dynamics 

Y = -dyH, W = -d^H. 

Finally, the development of the response quality needs to be specified. For instance, 
Tmax and q are to be given as functions of z\ these ordinary differential equations 
will generally take the form of stochastic differential equations [Oksendal 2003]. 

In summary, the key control decisions in mounting an artificial immune response 
are (i) the allocation of computational resources {x + z) to the AIS at any point 
in time; and (ii) how the resources are to be distributed between the "frontline" 
agents of the response itself (x) and the improvement of the efficacy of these agents 
{z). We have outlined here how this analysis might proceed for the simplest possible 
(three-dimensional) dynamic model of the artificial immune response. The second 
choice, between development and attack, is crucial: while resources are being spent 
on improving the agents, the job load might grow beyond tolerable levels; on the 
other hand, if too little has been invested in agent efficacy, the job might ultimately 
prove to be impossible to accomplish even at very high levels of expenditure of 
computational resources. 

It may be difficult to formulate cost functions (^, 77, t?, C) that accurately model 
the situation. This motivates an interest in fairly robust, qualitative relationships 
between various plausible choices for these functions and the optimal control regime 
that they entail, since such relationships indicate how critically the results depend 
on the particular choice of cost functions. In particular, an interesting hypothesis is 
that for a wide range of reasonable choices of cost functions one will generically find 
an optimal pattern of investment in development in the early stages of the artificial 
immune response, followed by a terminal phase of expenditure (almost) exclusively 
on frontline agents (cf. [Perelson et al. 1976]). In this section we have tried to model 
an artificial immune response in complete generality, without restricting ourselves to 
a particular type of algorithm or choice of problem to be solved. We expect that it 
would be worthwhile to apply this optimal control model to analyse the performance 
of some existing AIS algorithms such as CLONALG [de Castro & Von Zuben 2002], 
and this will give a better indication of what sort of cost functions are appropriate. 

16.4 Cytokine Networks 

The allocation of computational resources to the processes of an artificial immune 
response is critical to AIS performance. The urgency of the job load, the tasks at 
hand, the specific efficacies of the available artificial immune response mechanisms, 
the likelihood of discovering more efficacious responses (e.g. a higher-affinity recep
tor), demands on CPU time by processes outside the AIS: these are all factors that 
determine how much should be allocated to the available AIS and developing better 
responses. 

The natural immune system regulates this allocation by means of a system of various 
immune cells that mutally influence each other's activities via hormone-like inter-
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cellular messenger molecules called cytokines [Balkwill 2000, Roitt 1997]. Cytokines 
stimulate proliferation of various immune cells, with different immune cell types 
responding to different cytokines; these immune cells include the effector cells that 
carry out the response as well as the cells that produce cytokines themselves; indeed, 
immune cells often have a dual role, producing cytokines in addition to an effector 
function. The activities modulated by the cytokines produced by one cell include 
the production and secretion of cytokines by other immune cells. These interactions 
form a lymphoid endocrine system called the cytokine network. Each cell type in 
this network is characterised by its own subset of the cytokines that it can secrete, 
as well as its own subset of cytokine receptors that govern its activity. The cytokine 
network integrates stimuli from a variety of sources (e.g. distressed cells, effector 
cells, naive response-precursor cells), and the cytokines produced by the network 
regulate the development and growth of the responding immune cells. 

Prom a computational point of view, the cytokine network has an input of informa
tion about the state (extent and severity) of the disease, the state (extent and effi
cacy) of the ongoing responses, and an output that governs proliferation of selected 
effector cells as well as the organization of new responses (e.g. antigen presentation, 
germinal centre reaction). Both input and output are encoded by the concentrations 
of the various cytokines. From a modelling point of view, the complexity of cytokine 
networks poses considerable challenges [Callard et al. 1999]. Moreover, the cytokine 
network operates both locally and more globally, and is thus intermediate between 
a paracrine system and an endocrine system; however, here we ignore these spatial 
aspects for the sake of simplicity. 

Below we give a mathematical specification of the cytokine network which highlights 
it as a computational paradigm. To emphasise this intent, we call it an artificial cy
tokine network (ACN). The ACN is one example of a computational system inspired 
by biological para-/endocrine systems. As will become apparent, the ACN has much 
in common with the associative memory models studied by neural network theory 
[Meade & Sonneborn 1996]. This is not too surprising since the ACN is likewise a 
system that matches a vector representing a given situation to a vector represent
ing a (hopefully suitable) response. However, there are a few interesting points of 
contrast. The analogues of "synaptic weights" in the ACN are non-changing. How
ever, the ACN is in some sense a superposition of a number of associative memory 
structures, with the relative contributions of these structures changing on a second, 
slower time scale. 

16 .4 .1 G e n e r a l m o d e l 

To model the cytokine network, we consider an intercellular medium in which n 
distinct chemical species of cytokines diffuse and are well mixed. We can then de
fine cytokine concentrations i i i , . . . , t tn . The cytokines are produced by cytokine-
producing cells, of which there are m types. Cytokine production by a cell of any 
one of these types depends on external stimuli 5 i , . . . , 5^ (i.e. signals arising outside 
of the cytokine network) as well as the cytokines themselves. The density of cell 
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type ^ in the medium is denoted as ve,. We thus have the following kinetics: 

m 

ilk = ^ilJek{ui,,.. ,Un,si,... ,Sr)ve -fkUk, k=l,...,n, (16.36) 

ve = (^(pe(ui,..,,UnySi,...,Sr) - fj^ejve, £ = l , . . . , m ; (16.37) 

the function ip£k > 0 expresses the effect of the cytokines and external stimuli on the 
production of cytokine /c by a cell of type £; Uk > 0 is the rate of degradation of the 
kth cytokine; (pe > 0 expresses the effect of the cytokines and external stimuli on the 
proliferation rate of a cell of type £; and /j.e > 0 is the death rate of cells of type £. 
There is often a separation of time scales between the dynamics of the cytokines, 
equation (16.36), and the dynamics of the cytokine-producing cells, equation (16.37). 
The system as a whole is a functional, mapping the external stimuli into a cytokine 
profile, 

Si{t),...,Sr{t) 1-̂  Ui{t),...,Un{t) 

where the latter directs the immune response. 

When the stimuli evolve slowly (much slower than the typical timescale 1/A^), and 
when there is just one cell type (m = 1), this mapping is quasi-static, with the 
stimuli at time t uniquely determining the cytokine profile at that moment in time 
(up to transient behaviour). The cytokine network then behaves essentially like a 
look-up table. However, when m > 2, this look-up table will itself evolve over time, 
depending on the history of the stimuli. Moreover, certain rapid changes in the 
stimuli (on the fast 1/A^ timescale) may precipitate sudden transitions to a different 
look-up table. 

To illustrate these points more concretely, consider the following specification: 

' 0 ^ f c ( ' U i , . . . , ' a n , S i , . . . , S r ) = '^^ik^iYn^i'WikiUi -Oik) ( 1 6 . 3 8 ) 

with 
r 

Oik = Oik - Y^mkjSj (16.39) 

where Oik > 0 represents the stimulation threshold of cell type £ as regards production 
of cytokine k, and ip^j^ > 0 represents the maximum cell-specific secretion rate of 
cytokine /c by a cell of type i. The function S is monotonically increasing, with 
S{x) e [0,1] for all a; G M, with limx-^-oo S{x) = 0 and limx->+oo S{x) = 1; an 
example is S{x) = 1/(1 -f exp{—a;}). The parameters Wiki and Wikj^ which may be 
negative, zero, or positive, characterize how the production of cytokine k by cell 
type £ is affected by stimulation by cytokine i or external stimulus j . 

To gain an insight into the dynamics of this model, consider first the case m = 1 
(just one cell type), vi{t) = v (timescale separation) and with the Oik fixed for all 
cytokines k. Also, let us take S to be the Heaviside step function, i.e. 

S{x) = 0, rr < 0, (16.40) 

- 1 , x>l; (16.41) 
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the îfcS behave as 'crisp' thresholds for this choice. Let {ui,... ,tin) be a (quasi) 
stationary point which solves iik = 0 for all k (there are at most 2^ such points), 
and consider the region around this stationary point bounded by the hyperplanes 
that are the locus of X)r=i '^^kiUi = 9ek] stationary points do not generically he on 
such a hyperplane. This region is the basin of attraction of the asymptotically stable 
point ( t t i , . . . ,i?n), since we have either 5 = 1 or S' = 0 throughout this region for 
all/c. 

When 5 is a smooth sigmoid function (such as S{x) = 1 / (1+ e"^)), the situation 
becomes more complicated. However, we will in general be able to define regions 
around the stationary points in which X)fc=i ('̂ fc)̂  satisfies the properties of a Lya-
punov function (see chapter 10 in [Jordan &; Smith 1999]). The weight parameters 
characterize cell types; thus "learning" in the classical neural network sense only 
takes place over the much slower evolutionary timescale on which novel cell types 

16.4.2 Shape space model 

It is particularly useful to make a sharp distinction between different cell types in 
certain contexts, e.g. in virology [Nowak Sz May 2000], when one is mainly interested 
in the population of T lymphocytes that respond to the presence of a particular 
virus. However, in practice the immune system consists of a vast number of cells 
that display a broad range of genetic diversity in terms of the difi*erent receptors 
that are expressed on their cell surfaces. If we are interested in modelling a fairly 
broad range of responses within a population of cells, then in that case rather than 
thinking of a discrete set of cell types, it is convenient to model this diversity with 
a continuum. Since the specifities of the receptors (e.g. cytokine receptors) on the 
surface of a lymphocyte are determined by their shapes, it is useful to consider the 
cells as belonging to a shape space E of dimension M, and represent a cell type 
(that is, a cell with a particular type of receptor) by a vector 1 G X'. A review of 
shape space models in immunology can be found in [Perelson & Weisbuch 1997] for 
instance, while possible applications to AIS are discussed in [Hart & Ross 2004]. 

In order to model a population of cells with diff'erent receptors, we introduce a shape 
space density t '(l,t), such that 

ns{t)= [ v{lt)d^£ (16.42) 
Js 

is the number of cells in the subregion S at time t, where this subregion of E will 
correspond to cells of similar specificity. The notation d^i indicates that we are 
integrating over a subregion of the M-dimensional shape space. For example, in the 
cytokine network model we could say that all points near to some fixed point lo in 
shape space correspond to cells having receptors with high affinity for a particular 
cytokine, e.g. IL-12, and take 6* to be a ball of fixed radius R around lo G E. Thus, 
at each time t, ns{t) would count the number of cells that are strongly stimulated 
by IL-12, for instance. 



16 Mathematical Analysis of AIS 373 

Taking this shape space approach we can reformulate the cytokine network dynamics 
in terms of an integral partial differential system, as follows: 

u= f ^ ( 1 , u, s) v{\) d^£ - N u, (16.43) 

g = ( v > ( l , u , s ) - M l ) ) « ( l ) . (16.44) 

In the above, u = {ui,... ,Un) is the cytokine state vector (a function of t); v = 
v{l,t) is the shape space density (with dependence on t suppressed above); N = 
diag(i/i , . . . ,i^n) is the death rate matrix for cytokines; and //(I) is the local cell 
death rate in shape space. The network functions ^ and (p must then be specified 
over the whole of shape space. 

From the point of view of computer simulation, or designing ACN algorithms, the 
continuum version of the cytokine model, given by the coupled ordinary and partial 
differential equations (16.43) and (16.44), appears to be more awkward than the 
ODEs (16.36) and (16.37), since for computer modelling one requires discrete dy
namics. However, we expect that for modelling a large number of cytokine receptor 
types, the shape space version of the cytokine model might be more tractable for 
doing analytical calculations. 

16.5 Outlook 

We have outlined some of the basic notions in the theory of dynamical systems, and 
reviewed the B-model as one example of a receptor repertoire-based model of the 
adaptive immune system; alternative approaches to the dynamics of the adaptive T 
cell repertoire can be found in [van den Berg & Kiselev 2004, van den Berg 2004, Lu-
ciani et al. 2001], for instance. We have also outlined an optimal control approach to 
the allocation of computational resources in an artificial immune response. Further
more, we have sketched a model of an artificial cytokine network (ACN) based on a 
decision-making subsystem of the natural immune system. Viewed as computational 
systems, the adaptive repertoire as well as the ACN are characterized by a few com
mon properties: (i) they consist of a vast number of fairly complex computational 
units (agents) with a fairly stereotypical, limited set of possible behaviours; (ii) the 
execution of tasks by the system arises out of a myriad of mutual interactions be
tween these agents; (iii) reliable, robust behaviour of the system as a whole emerges 
as a statistical effect from the vastness of the number of agents. 

The natural computational medium for systems of the kind described above is mas
sively parallel computing which, unfortunately, remains relatively underdeveloped. 
Thus the question arises as to whether these immune mechanisms can in fact be 
effectively exploited: if we attempt to simulate the massively parallel dynamics of 
these vast populations, we quickly find ourselves constrained by scalability issues 
[Stibor et al 2005a], and we are at risk of losing the useful properties that arise by 
virtue of the "thermodynamic limit" effect. We can think of various ways out of this 
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quandary: (a) accept the various limitations on scalability, and attempt to obtain 
useful applications within these constraints; (b) perform the thermodynamic limit 
through theoretical calculations, and develop mean field models with correlations 
to simulate the dynamics directly at the emergent system level; (c) adopt AIS as 
a programming paradigm for massively parallel hardware. Each of these avenues 
deserves to be explored in the future. 
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Summary . A Preamble: In the end, biological phenomena are best understood in 
terms of evolution, which implies among other things, interactive selection on vari
ants such that the selector and the selectee evolve as lineages [Hull et al 2001]. The 
formulation of the concept should precede any attempt at modeling or simulation of 
any family of observations. The construction of a computer web around a random 
collection of facts is of marginal interest. Abstractions must be heuristic implying a 
testable output accompanied by a sharpening of the concept. This essay is an effort 
to conceptualize the most divisively discussed segment of immunology, namely, the 
Self-Nonself discrimination. 

17.1 Introduction 

The property referred to as a "Self-Nonself discrimination" is a requirement of any 
mechanism that has a bio-destructive and ridding effector output. All free living 
organisms defend themselves against parasitism by using such mechanisms. Bio-
destructive and ridding protective mechanisms require a recognitive site that is of 
sufficient specificity to distinguish the Not-To-Be-Ridded (NTBR) components of 
the host from the To-Be-Ridded (TBR) components of the parasite/pathogen. 

The recognitive sites (referred to as paratopes) that guide these effector mechanisms 
to their targets are of two origins. There are those paratopes that are germline-
encoded and germline-selected (Type I). These are present in all free living organ
isms. Then, there are those paratopes that are somatically-derived and somatically-



376 Melvin Cohn 

selected (Type II). Non-vertebrates express only Type I paratopes, whereas verte
brates express both Types I and 11. 

As the interactive selection between pathogen and host progressed, there came a 
point when germline-selection on the non-vertebrate Type I paratopes became too 
slow to match the ability of the various members of the pathogenic load to escape 
recognition. This necessitated a unique solution that appeared at the time when 
vertebrates emerged, namely to generate somatically a large, random (with respect 
to the recognition of Self and Nonself) paratopic repertoire that divided the antigenic 
universe into combinatorials of determinants (ligands) referred to as epitopes. An 
antigen is defined as a combinatorial of linked epitopes [Cohn & Langman 1990, Cohn 
1997, Cohn 2005a]. 

While this Type II paratopic repertoire effectively solved the problem of the escape 
of pathogens from recognition, it created two new problems that had to be solved 
in parallel. 

First, this random paratopic repertoire had to be sorted into those specificities (anti-
Self) which, if expressed, would debilitate the host by autoimmunity and those 
specificities (anti-Nonself) which, if not expressed, would result in the death of the 
host by infection. I will refer to the sorting of the Type II paratopic repertoire as 
Decision 1. 

Second, the sorted repertoire had to be coupled to the biodestructive and ridding 
eff'ector mechanisms such that the response to each antigen is both coherent and 
independent. I will refer to the appropriate coupling of the sorted repertoire to the 
effector mechanisms as Decision 2, the regulation of effector class. 

The effector mechanisms were, in large measure, invented by the non-vertebrates. 
However, when the Type II somatically-derived repertoire emerged, these effector 
mechanisms with their Type I germline-selected paratopes co-evolved with it, such 
that the effector output of the vertebrates could be controlled by either paratopic 
input. 

There is an asymmetry to consider. The Type I paratopic repertoire cannot recognize 
a large portion of the epitopic universe that the Type II paratopic repertoire can see. 
The somatically-derived Type II repertoire recognizes everything that the germline-
selected Type I repertoire sees, not vice versa. This has many consequences the most 
important being that Decision 1 cannot be mediated by germline-selected paratopes. 

17.2 Decision 1. The Sorting of the Paratopic Repertoire 

This essay is essentially about Decision 1, the sorting of the Type II paratopic 
repertoire. The term "Self-Nonself discrimination" has invited all manners of ter
giversation and semantic debate that has been largely unproductive. Unfortunately, 
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it is very difficult to avoid using the terms Self and Nonself and still communicate, 
because they have been cemented into a vast literature. I have tried referring to 
a more precise Not-To-Be-Ridded (NTBR)—To-Be-Ridded (TBR) discrimination 
but this has not taken hold. Consequently, I will continue to use Self (S) and Non-
self (NS), constantly warning the reader of various ambiguities and misuses of the 
concept. 

To begin, I will define the Self-Nonself (S-NS) discrimination as the mechanism by 
which the Type II repertoire is sorted (Decision 1). This is the only valid meaning of 
the term because an adequate Decision 1 is both necessary and sufficient to enable 
the ridding of the pathogen without debilitating the host. An attack on Self (NTBR) 
must have a debilitating consequence if it is to be a selectable factor in the evolution 
of the mechanism of Decision 1. 

Stated differently, the function of Decision 2, the regulation of effector class, is 
to optimize the biodestruction and ridding of the target, which is defined by the 
paratopes put under its control by Decision 1. Decision 2 is not concerned with 
whether the paratope is anti-Self (NTBR) or anti-Nonself (TBR). It rids any target 
defined by the paratopes of the activated cells that leave Decision 1. 

The function of Decision 1, the sorting of the repertoire, is to subtract the anti-
Self (anti-NTBR) specificities from the repertoire and leave the residue as anti-
Nonself (anti-TBR), which protects the host. The consequence of this dichotomy into 
Decision 1, the sorting of the repertoire, and Decision 2, the regulation of effector 
class, is that Decision 1, not Decision 2, can be properly described as the Self-Nonself 
or the NTBR-TBR discrimination. Decision 2 does not make this discrimination; it 
optimizes the ridding independent of the specificity of the paratope, anti-S or anti-
NS, that Decision 1 puts under its control. 

17.2.1 What does it take to sort the Type II repertoire? 

In the case of the germline-selected paratopic repertoire (Type I), the cells express
ing it are born as effectors. This is only possible because the Type I repertoire 
is germline-selected to purge anti-Self and, therefore, only anti-Nonself paratopes 
survive to be encoded in the germline. 

In the case of the somatically-generated paratopic repertoire (Type II), if the cells 
expressing it were born as effectors, the individual would die of autoimmunity. The 
somatically-encoded repertoire cannot be sorted at the level of effectors (i.e., at the 
level of Decision 2). 

Consequently, in order to sort this repertoire, we must envisage an immune system 
arising as initial state cells (i-cells) expressing the somatically generated repertoire on 
a one cell-one paratope basis and devoid of effector function. The antigen-responsive 
or initial state cells (i-cells), must have two pathways open to them, inactivation 
and activation, because they cannot know what is the specificity of their expressed 
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paratopes, anti-S or anti-NS. Those i-cells expressing anti-Self must be inactivated; 
those expressing anti-Nonself must have the potential to be activated to enter the 
Decision 2 pathway. 

17.2.2 Decision 1 requires that the antigenic universe be sorted 
into Self and Nonself 

The sorting of the paratopes into anti-S and anti-NS depends upon the ability of 
the individual to sort the antigenic universe into Self and Nonself. It is the somatic 
sorting of the antigenic universe that permits the sorting of the somatically generated 
repertoire. This is model-independent; no signal via the antigen-receptor, T-cell 
receptor (TCR) or B-cell receptor (BCR) can tell the i-cell if it is anti-S or anti-NS. 

17.2.3 What option is not open to the individual in order to sort 
the antigen universe into Self and Nonself? 

We might begin with the assumption that all Self is red and all Nonself is blue; 
or all Self is harmless and all Nonself is dangerous [Matzinger 2002], or pathogenic 
[Janeway 1992] or cytopathic [Zinkernagel Sz Hengartner 2004]; or all Self is included 
in the thymus whereas all Nonself is excluded from it [Kyewski & Derbinski 2004, 
Gotter & Kyewski 1994]; or conversely, all Self is excluded from lymph nodes whereas 
all Nonself enters them [Zinkernagel & Hengartner 2004]; or all Self arises inside the 
individual whereas all Nonself comes from the outside (often declared); or all Self 
differs from Nonself by emergent properties [Cohen et al. 2004], or tuning [Grossman 
& Paul 2001] or context [Cohen 2000b] or integrity [Dembic 2000] or morphostasis 
[Cunliffe 1997], and so on. 

If any of these properties were to divide the antigenic universe into Self and Nonself, 
then they would have to be recognized by germline-encoded recognitive elements. 
However, the germline-selected repertoire is per force blind to a large portion of the 
antigenic universe that the somatically-derived repertoire recognizes. An antigenic 
universe sorted by a germline-selected repertoire (Type I) would leave most of the 
somatically selected random repertoire (Type II) unsorted. A somatically generated 
repertoire can only be sorted by an antigenic universe that itself has been sorted 
into Self and Nonself by a somatic learning or historical process. In other words, the 
mechanism used to sort the antigenic universe must be independent of the "innate" 
or germline-encoded (Type I) recognitive system. Decision 1 must be dependent 
solely on interactions of the presorted antigenic universe with the somatically gen
erated repertoire (Type II) itself. 

This argument can be formulated in another way. There is no physical or chemical 
property of antigens as classes that can be used by an individual's immune system to 
sort the antigenic universe into Self and Nonself. This follows because what is Self 
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for one individual of a species is Nonself for another. A random paratopic 
repertoire cannot be sorted into anti-S and anti-NS by germline encoding of the 
recognition of Self. Further, the immune system has no way to determine if an 
antigen is or is not encoded in the host genome or whether the antigen originates 
from the inside or the outside of the host. 

It might be stressed that an immune attack on only one Self-component would 
debilitate the individual. Therefore, any model that allows for the sorting of a portion 
of the Self-antigenic family is lacking; all must be sorted. Any partial solution only 
invites, how does this system deal with the remainder? 

17.2.4 What solution is open? 

Essentially only one formulation has withstood repeated critical analyses although 
it now requires tweaking. I will refer to it as the "Developmental Time Model." 

Under this model, as a first approximation to initiate the discussion, all Self and 
no Nonself must be expressed during a developmental time window when i-cells 
arise under conditions such that they are inactivatable-only. Interaction with Self-
epitopes, the only ones present, deletes them. When the window closes, meaning 
that the system becomes responsive, the persistence of Self maintains the state 
of unresponsiveness to Self-antigen. This process operates throughout the entire 
individual viewed as a single space. 

In all vertebrates with somatically derived paratopic repertoires, the fetus is pro
tected by maternal immunity until its own immune system becomes responsive. 
During this period, the fetal immune system arises in the presence of Self and in the 
absence of Nonself. 

It is important to appreciate that all somatic processes are built on germline-encoded 
components, and, in the case of a Decision 1 sorting mechanism that is built on 
developmental time, the germline-encoded component is the duration of the time 
window. It is the time that it takes before the system becomes responsive that is 
germline-selected. 

Consider the following scenario (Figure 17.1): 

If there were no overlap between the de novo appearance of Self and the entrance of 
Nonself into the system then germline-selection could set the length of the develop
mental time window such that the window remained open (i.e., the system remained 
unresponsive or inactivatable-only) until the last Self-antigen had appeared, at which 
point the window would close (i.e., the system would become responsive to the ap
pearance of Nonself). No new Self is allowed to appear after the window closes. The 
Self that was expressed while the window was open, must persist. Clearly the in
dividual must learn (a somatic process) what is Self (Not-To-Be-Ridded) at a time 
when Nonself (To-Be-Ridded) is absent. Another way to state this is that Self is 
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Fig. 17.1. The idealized Developmental Time Model 

defined by the immune system as prior and persistent. Nonself is defined by the 
immune system as posterior and transient. 

However, if there is an overlap between the de novo appearance of Self- and Nonself-
antigens then evolution would have no way to set the length of the time window. 
That this is a likely scenario derives from the fact that Self-components are evolu-
tionarily selected to function in the physiology of the host, not to escape the immune 
system. The immune system is selected upon not to attack these Not-To-Be-Ridded 
or Self-components. It is not surprising, then, that some Self, for reasons of function, 
would be expressed after the developmental time window closes and the system is 
responsive. 

This problem can be illustrated as follows (Figure 17.2); 

If evolution closed the window when Nonself first appears, the individual would die 
of autoimmunity to the late appearing Self-antigen (NTBR). If evolution closed the 
window when the last Self-antigen had appeared, then the individual would die of 
infection by Nonself pathogens to which the system would be unresponsive. Given 
that there is an overlap, the Developmental Time Model needs to be tweaked. 
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Fig. 17.2. The generahzed (tweaked) Developmental Time Model 

17.2.5 Tweaking the Developmental Time Model 

In order to deal with late appearing Self-antigens (NTBR), I envisage the following 
scenario. The developmental time window must close (i.e., the immune system be
comes responsive) just before the first Nonself enters the system (in all likelihood 
around birth). This protects the neonate against infection but requires that the late 
appearing Self be ectopically expressed initially in an anatomical space where cru
cial regulatory i-cells arise under inactivatable-only conditions. This requires some 
detailing. 

First, i-cells are of two categories, iT-cells that arise in the thymus and iB-cells that 
arise in the bone marrow (or bursa). Evolution had to decide where to ectopically 
express the late appearing Self. Fortunately, this choice was simplified because there 
is an asymmetry between the two categories. The T-helpers (Th) which arise in 
the thymus are required, when in the effector state (eTh), for the activation of all 
categories of i-cell, iT and iB, including the iTh itself. In the absence of effector T-
helpers (eTh), the i-cell is inactivatable-only upon interaction of its antigen-receptor, 
TCR or BCR, with ligand. The appropriate ectopic expression in thymus when the 
window is open permits deletion of iTh anti-Self leaving all other i-cells anti-Self 
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inactivable-only. The crucial role of the effector T-helper (eTh) as a regulatory cell 
will be detailed later. At this point it is only necessary to understand that it is the 
insufficiency or sufficiency of eTh that determines responsiveness to an antigen. 

Second, the iTh-cell can only recognize as ligand peptide (P) derived from the late 
appearing Self presented by an MHC-encoded Class II restricting element (RII). 
The ectopic expression in thymus then must present the late appearing Self as 
an appropriate [Ps-RII] ligand for the iTh. There are new endogenously generated 
antigens that arise by mutation or other during the life of an individual but they are 
often non-immunogenic because they are not expressed functionally by presentation 
on RII. Many de novo arising tumor antigens as well as idiotypic determinants fall 
into this category. 

The generalized Developmental Time Model then has two germline-selected ele
ments: 

1. The length of the developmental time window, and 
2. The appropriate ectopic expression in thymus as [Ps-RII] of all peripheral Self-

components that appear after the window closes. 

The assumption here is that ectopic expression in thymus was evolutionarily selected 
to cope with Self (Not-To-Be-Ridded)-antigens that appear after the developmental 
window closes and the system is responsive. The ectopic expression in thymus must 
occur before the developmental time window closes and the system is responsive. If 
it occurred after the window closed, iTh specific for the given late expression Self-
antigen would accumulate in the periphery and initiate a response before deletion of 
iTh by ectopic expression in thymus could have an effect. The timing is important 
(selectable) here. 

Thus far I have analyzed how the individual sorts the antigenic universe into Self 
and Nonself. Sorting by an individual implies a somatic learning process. The Self 
components of the host are categorized by this process as shown in Table 17.1. 

17.3 How Does the Paratopic Repertoire Respond to the 
Antigenic Univerise? 

The initial state or i-cells arise when the developmental time window is open; they 
encounter Self-only and are inactivated. Those that do not encounter antigen are 
defined as anti-Nonself and accumulate to a steady state, homeostatically determined 
level. This process can be symbohzed as: 

S-epitope 

i-cell —> INACTIVATION 

Signal[l] 
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Category of 

self-antigens 

11 

II Aire+(wt) 

Aire" (mutant) 

III 

Expression in 

Thymus 

+ 
4-(ectopic) 

-

periphery when 

developmental window is 

open 

+ 

-

+ 

closed 

-t-

+ 

Observation 

unresponsive to SI 

unresponsive to SII 

autoimmunity to SII 

(eTh-dependent) 

unresponsive to SIII 

Table 17.1. Categories of host-encoded Self-antigens defined by the Developmental 
Time Model.^4ire is a transactivating transcription factor required for the ectopic 
expression of some peripheral antigens as [P-RII] in thymus. These are presumably 
late expression Self-antigens. A mutation of Aire, Aire~, results in failure to ectopi-
cally express the peripheral antigens in thymus with resultant autoimmunity [Su & 
Anderson 2004, Anderson et al 2002]. 

As long as Self persists, the inactivation of i-cells anti-Self maintains the state of 
unresponsiveness to Self even when the window closes. 

No signal via the antigen-receptors, TCR or BCR, can tell the i-cell whether its 
specificity is anti-S or anti-NS. Signal[1] upon interaction with ligand is the same and 
eventually inactivating whether the antigen is Self or Nonself. In order to distinguish 
Self from Nonself a second signal must be delivered to the i-cell receiving Signal[1] 
from an antigen-specific source that itself has independently undergone a sorting 
process. This pathway would be: 

NS-antigen 

i-cell —>—> ACTIVATION 

Signal([l]+[2]) 

e-cell (eff'ector) 

The origin of this Signal[2] is at the crux of the S-NS discrimination. In order to 
clarify this we must review the overall pathway that i-cells take in becoming eff'ectors 
anti-NS [Cohn 2005b]. 

17.3.1 The response pathway (Figure 17.3) 

There is a steady state production of i-cells anti-S and anti-NS [Cohn Sz Langman 
1990, Cohn 1997, Cohn 1998, Cohn 2002]. Upon interaction with their ligand, Sig-
nal[l] converts the i-cell to an anticipatory cell or a-cell that has two pathways open 
to it, inactivation or activation. 

The continued delivery of Signal[l] results in inactivation. 
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Fig. 17.3. The pathway of the sorting of the repertoire (Decision 1.) 

However, if an a-cell on the pathway to inactivation receives Signal[2] then it is 
activated to what is symboHzed as the g-cell; this is the first step of the Decision 2 
pathway to effectors. The anticipatory or a-cell intermediate insures that no i-cell 
can be activated that, in principle, could not have been inactivated. Signals ([l]+[2]) 
are required for activation. 

17.3.2 What is the source of Signal[2]? 

As I pointed out earlier. Signal[2] is delivered by an effector T-helper (eTh) to an 
a-cell. 

The requirement of Signal [2] is that it be epitope-specific and Nonself-antigen spe
cific. Nonself-antigen specificity depends on the sorting mechanism used by the cells 
delivering Signal[2]. Thus, there are two points to develop. 

First, the pathway of Decision 2 is different for T- and B-cells because T-cells are 
restricted and have their effector classes, helper (Th), suppressor (Tsu), cytotoxic, 
(Tc), predetermined intrathymically. Further, as T-cells only see peptide derived by 
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processing, the Antigen-Presenting Cell (APC) becomes an obligatory player and an 
eTh-APC-aT interaction must be envisaged. For B-cells, because they themselves 
present the antigen only an eTh-aB interaction is required for activation. 

The crux of the interaction is that Signal[2] must only be delivered by an eTh recog
nizing one epitope of the NS-antigen to an a-cell recognizing another epitope from 
that same antigen. This is referred to as Associative Recognition of Antigen (ARA). 
In the absence of ARA, coherent and independent regulation of the response would 
be impossible. The mechanism that assures ARA in the eTh-APC-aT interaction 
has been ignored by immunologists but that doesn't make it less crucial [Cohn 
1992, Bretscher 1999]. 

It should be noted in this regard that inactivation (Signal[1]) occurs epitope-by-
epitope whereas activation (Signal([l]+[2]) occurs antigen-by-antigen (ARA). 

Second, the iTh undergoes the same pathway of activation as all other i-cells, mean
ing that it requires an eTh delivered Signal[2], thus raising the question, "Where 
does this primer eTh come from?" 

This question was raised for the first time by the ARA model [Cohn 1969] and 
solutions to it have been proposed [Bretscher 1972]. The most likely [Cohn et al. 
2002, Langman et al. 2003, Cohn 1983] is that there is an NS antigen-independent 
pathway to primer eTh anti-NS (Figure 17.4). 

Essentially, if the rate of inactivation of the iTh on encountering prior and persis
tent Self is rapid compared to an Nonself-independent conversion to effectors then 
the primer eTh will be essentially anti-NS and function as the source of eTh that 
initiate an "autocatalytic" induction of iTh anti-NS to eTh anti-NS. This, in turn, 
determines the response of all other i-cells specific for that antigen [Cohn 1992]. 

Returning now to an earlier discussion, in referring to the developmental time win
dow as open or closed, I meant that when open, the system is unresponsive and 
when it closed it is responsive. Now this needs precision. 

When the developmental time window is open the immune system is unresponsive 
because of an insufficiency of eTh. The i-cells are not inherently inactivatable-only. 
They always have two pathways open to them; it is the system, because it is lacking 
in eTh, that renders the i-cell inactivatable-only upon interaction with an epitope 
(Signal[l] only). 

When the developmental time window closes and the system is responsive, it is 
because a priming level of eTh anti-NS has been reached. 

Most immunologists treat Signal[2] as a "costimulatory" event determined by the 
APC. This cannot be substituted for the eTh in the activation of aT-cells with
out providing a whole new framework accounting for APC function, and at present 
this is lacking. As it is viewed today, "costimulation" as a source of Signal[2], is 
antigen-unspecific; "costimulation" is essentially innocent bystander activation, the 
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Fig. 17.4. A. Induction iTh to effectors (eTh). B.The antigen-independent pathway 
to eTh 

requirement for ARA being totally ignored. Further, the APC is treated as func
tioning independently of whether the developmental time window is open or closed. 

As the APC presents both S and NS peptides, it has no way to selectively activate 
anti-NS and delete anti-S. Therefore, it could not be a factor in Decision 1, the 
sorting of the repertoire. The repertoire must be presorted before antigen-unspecific 
signals like costimulation can play a role in directing responsiveness (i.e., initiating 
Decision 2). 

Further, if the APC can present both S and NS, then it can present two NS-antigens. 
As each different antigen requires coherent and independent regulation of effector 
class [Cohn 2005a], processing multiple antigens to peptides that are displayed mixed 
and scrambled on the APC surface, would make impossible coherent and indepen
dent regulation of class for each antigen. Associative Recognition of antigen (ARA) 
is obligatory to a regulated response. This requires that the processed peptides from 
each antigen be kept together or linked for presentation in an eTh-APC-aTh inter
action. I have discussed these problems elsewhere [Cohn 2005a, Cohn 2005b, Cohn 
1992]. 
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17.3.3 An aside on T-suppression 

One cannot leave the question of the sorting of the Type II repertoire without 
commenting on the immensely popular subject of T-suppression usually referred to 
as regulatory T-cells (Tregs) without distinguishing T-help (an equally poor term) 
from Tsuppression. As would be true for any subject that barrels along without 
any conceptualization and with no rationalized role for its place in the regulation of 
responsiveness, the interpretations are made on an "I see-I believe" basis replete with 
optimistic emphasis on "the cure." I have discussed the role of feedback suppression 
[Cohn 2004], so that here I would simply like to point out that T-suppression on a 
priori grounds has no role to play in Decision 1, the sorting of the repertoire but 
it does have a key role in Decision 2 to control the magnitude of the response. As 
feedback is essential to a regulated response, a role for T-suppression is predictable. 
However, this implies that the iT-suppressor must be sorted like every other i-cell to 
be anti-Nonself, a point sharply disputed by the workers in this field [Picca & Caton 
2005, Hsieh et al. 2004]. Suffice it to point out here that, if the T-suppressor is sorted 
to be anti-S, then it cannot play a role in Decision 2, the regulation of class. If it is 
sorted to be anti-NS, it cannot play a role in Decision 1, the sorting of the repertoire. 
The T-suppressor repertoire cannot be left unsorted and be functional. I have yet to 
see a heuristic model that either leaves the repertoire unsorted (i.e., no Decision 1) 
and determines the S-NS discrimination uniquely at the level of regulation of effector 
output, or that sorts the repertoire by feedback from the effector output, without the 
latter debilitating the host. Further, no model of the mechanism of sorting has been 
able to avoid a step of negative selection, not even models of so-called "dominant 
tolerance" because specificities directed against the cells of the immune system itself 
must be purged by deletion (apoptosis) for suppression to be functional. 

A straightforward argument ruling out T-supression (Tregs) in making Decision 1, 
is that if it did have such a role, it would have to play that role via associative 
recognition of antigen. This would make the individual unresponsive ("tolerant") to 
the Self-of-the-species. If there is one fact all immunologists accept, it is that "what 
is Self for one individual is Nonself for another!" 

17.3.4 A detail of Self-antigen presentation 

The three categories of cell, T-helper (Th), T-cytotoxic (Tc) and B-cell respond to 
different ligands (epitopes). The T-helper recognizes [P-RII]; the cytotoxic T-cell 
recognizes [P-RI]; and the B-cell recognizes a "shape-patch" epitope. The MHC-
encoded Class I restricting element (RI) is expressed by every cell, which means that 
most intracellular proteins are presented to cytotoxic T-cells (Tc). However, only 
a limited number of cells express MHC-encoded Class II restricting element (RII), 
which means that many host proteins are not seen directly as Self by the T-helper 
(Th), although some may be seen indirectly as "housekeeping" antigens taken up 
from effete and necrosing cells by APCs. The B-cell recognizes epitopes encountered 
on soluble components and cell surfaces. The three Self-ligand or epitopic repertoires 
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Presentation of a Self-component as: 

P-RII 

+ 

+ 

P-RI 

+ 

Shape-patch 

+ 
+ 

Consequence of a challenge by Self 

Unresponsive in all categories, Th, Tc and B 

Unresponsive in Tc, B, but responsive in Th 

Unresponsive in Th, but potentially 

responsive in Tc and B (see text) 

Table 17.2. The effect of differential presentation of Self-antigens 

of the Th-, Tc- and B-cell are different. While inactivation only requires interaction 
with epitope (Signal[l]), activation (Signal[1]+[2]) introduces an asymmetry because 
eTh is required to activate iTc and iB not vice versa. Any host antigens not presented 
on RII while the developmental window is open would be treated as Nonself by Th 
(Table 17.2). 

As the response to all Self-ligands is eTh-dependent, a Self-component not pre
sented on RII would not be inactivating for Th, which would treat the epitope as 
Nonself were it later presented as [P-RII]. This would occur if the individual were 
confronted with a Nonself-antigen that shared an epitope with the Self-antigen in 
question. Whether the state of unresponsiveness to that Self-component would be 
broken depends on several factors but most often the NS-antigen is ridded before 
autoimmunity becomes self-generating and debilitating. In any case, autoimmunity 
via this route occurs rarely, but does occur. This is the limit to evolutionary selection 
which never achieves perfection. 

17.3.5 An important characteristic of Signal[l] inactivation 

Inactivation upon receiving Signal[l] cannot be instantaneous. There must be an 
interim after interaction with an epitope during which the a-cell on the pathway to 
inactivation can be diverted to activation. If the interim (half-life) were too short, 
activation would be impossible because delivery of Signal[2] involving cell-cell inter
actions (eTh-APC-aT) is slow compared to epitope-cell interactions. The half-life for 
inactivation determines the steady state level of a-cells anti-Self on the pathway to 
inactivation. I refer to this as the autoimmune boundary [Cohn k. Langman 1990]. 
The half life of inactivation must be short enough to make autoimmunity acceptably 
rare, yet long enough to permit activation. 
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17.3.6 In order to give the discussion balance 

Many immunologists [Zinkernagel &: Hengartner 2004, Silverstein &: Rose 1997, 
Miller &; Basten 1996, Miller 2004] do not consider developmental time as a factor in 
determining the Self-Nonself discrimination (i.e., Decision 1). Their arguments have 
been analyzed elsewhere [Cohn 2001]. Suffice it to point out here, the experimental 
demonstration that one can induce a response while the developmental time win
dow is open using procedures that provide a source of Signal[2] (e.g., LPS) does not 
challenge the Time Model; it supports it. Secondly, epitopes detectable by an im-
munologist that are generated after the window closes (e.g., idiotypic determinants) 
do not test the Time Model as they are non-immunogenic, in most cases obligatorily 
"tolerogenic" due to a lack of eTh that recognize them [Parks et al 1978, Parks & 
Weigle 1980]. Third, the assumption [Kyewski &; Derbinski 2004, Gotter & Kyewski 
1994] that the sorting of the repertoire can be adequately accomplished by postu
lating a space (e.g., thymus) where all Self-antigens are expressed as [Ps-RII], does 
not obviate the Developmental Time Model. If any of these Self-antigens were ex
pressed both in thymus and periphery after the window closed, the iTh anti-Self 
that accumulated extra-thymically while the window was open would initiate an au
toimmune response when the delayed Self-antigen appeared in the periphery. Pure 
space Models are also constrained by developmental time. Lastly, it is not ^Hmplicit 
in the'^ Developmental time Model that there "is a requirement for prenatal gen
eration of the entire immune repertoire""^ [Miller 2004]. This is a conceptual error, 
the history of which has been analyzed [Cohn 2001]. The state of unresponsiveness 
is maintained as a steady state process discussed both here and elsewhere [Cohn 
2005b, Cohn 1992, Bretscher 1999, Bretscher 1972, Cohn et al 2002, Bretscher & 
Cohn 1970]. 

17.4 A Summary of what has been Argued 

First, the response of the immune system can be reduced to two processes: 

• the sorting of the repertoire (Decision 1) 
• the regulation of effector class (Decision 2) 

Second, in order to sort a somatically-derived, random paratopic repertoire, a prior 
somatic sorting of the antigenic universe into Self and Nonself is required. 

These two points are matters of principle. In order to extrapolate principle to mech
anism, I generalized the Developmental Time Model to include those Self-antigens 
that appear after the time window closes and the system becomes responsive. For 
these delayed expression Self-antigens early ectopic expression in the thymus when 
the system is unresponsive, is required. The generalized Developmental Time Model 
defines: 
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• Self as prior and persistent 
• Nonself as posterior and transient. 

This sorting mechanism results in an individual that expresses a unique Self and 
permits us to understand why "What is Self for one individual is Nonself for an
other." 

Given this, I then considered how the somatic repertoire might respond to the sorted 
antigenic universe. 

The purging of anti-Self from the repertoire leaving the residue as anti-Nonself re
quires that the initial state or i-cell be able to enter one of two pathways, inactiva-
tion or activation. Two pathways require two signals and I assigned Signal[l] via the 
antigen-receptor to the inactivation pathway and Signals ([l]4-[2]) to the activation 
pathway. The source of Signal [2] is the effector T-helper (eTh), thus making this cell 
the key regulator of responsiveness. For any given antigen, the response depends on 
the sufficiency or insufficiency of eTh specific for that antigen. All regulation of 
responsiveness in one way or the other passes via the eTh. 

This introduced the problem of the origin of eTh (the primer question) and I pro
posed a pathway unique to it namely an antigen-independent conversion of iTh to 
eTh anti-NS. 

Now I would like to illustrate these principles by referring to several classic experi
ments and reinterpreting them in the light of the present framework. 

17.5 A Reinterpretation of Illustrative Experiments 

17.5 .1 E x p e r i m e n t 1. [Ohki et al 1987 , C o u t i n h o et al 
1993 , Le D o u a r i n et al 1996] 

A quail limb bud was grafted onto a chicken embryo before any i-cells appeared in the 
system (i.e., when the developmental time window was open). My expectation would 
have been that the chicken would be born with a quail wing that would be accepted 
throughout life as a Self or NTBR host component. This is not what happens. 
The chicken is born with a healthy integrated quail wing but shortly after birth an 
acute rejection reaction occurs. In the framework of the generalized Time Model, 
the only explanation would be that the quail limb bud expresses a new NTBR- or 
Self-component after the developmental window has closed and the immune system 
is responsive. 

If this reinterpretation has any validity then we must ask, why isn't the quail limb 
rejected in quail? We have two possible answers. The postulated quail component 
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that is delayed in expression in chick either is expressed early in quail while the 
window is open or is equally delayed in quail but ectopically expressed in the quail 
thymus while the window is open (the generalized Developmental Time Model). 

What experiment distinguishes the two possibilities? A graft of the embryonic quail 
thymic epithelium onto chick results in a chimeric quail-chick thymus. In such an 
animal, if the quail limb were rejected, then abnormal delayed expression of the quail 
component in chick would be validated. If it is accepted then ectopic expression in 
thymus of the delayed component is the explanation. It turns out that the quail limb 
is accepted. Therefore, ectopic expression in thymus is the favored interpretation. 

It should be stressed that delayed expression for T-helpers means delayed functional 
presentation of peptide (P) on Class II MHC-encoded restricting elements (RII), not 
the mere presence of the component. 

Further, and as an aside, the ectopic expression of the delayed antigen on quail 
thymic epithelium resulting in graft acceptance means that chick can see a quail 
[P-RII] complex. Other examples of allele-specific recognition of Xeno-MHC by a 
given TCR locus are known [Swain et al. 1983]. This has important implications for 
the pathway of speciation [Cohn &; Mata 2006]. 

One might justifiably in the framework of the generalized Time Model cite these 
experiments as the first demonstration of the ectopic expression of peripheral Self-
antigens in the thymus. The discovery of Aire controlled ectopic expression [Su & 
Anderson 2004, Anderson et al. 2002] confirmed these studies in that it gave us 
one among several mechanisms for ectopic thymic expression [Gillard & Farr 2005]. 
Under the generalized Time Model, all peripheral Self-antigens that appear after 
the window closes would be expected to be ectopically expressed in thymus while 
the window was open. 

17.5.2 Experiment 2 [Thomas-Vaslin et al 1987] 

This experiment deals with a mutant mouse (NOD, non-obese diabetic) that spon
taneously develops after birth an autoimmune disease due to an attack on a specific 
antigen expressed on the ;5-cells of the pancreas resulting in diabetes. Under the 
generalized Time Model, the mutant NOD mouse is expected to express a delayed 
component of /3-cells that fails to be appropriately ectopically expressed in the thy
mus (i.e., as a [P-RII] complex). Given a failure to ectopically and normally express 
the /3-ce\l component in thymus, it is predictable that a graft of mutant thymus onto 
a wild type syngeneic normal mice would result in diabetes. The failure of NOD thy
mus to ectopically express the peripheral target that appears after the time window 
closes would make a peripheral Self-component that is delayed in expression indis
tinguishable from a Nonself-component. 

This is what happens. The NOD thymic epithelium grafted onto an athymic syn
geneic mouse results in detectable autoimmunity. If NOD is a mutation that deletes 
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ectopic expression in thymus of a delayed expression /3-cell antigen, then the other
wise normal animal would suffer autoimmunity. 

These two experiments are complementary. In the quail-chick experiment [Ohki et 
al. 1987, Coutinho et al. 1993, Le Douarin et al. 1996], the graft of thymic epithelium 
added a Self-component to the Self of the chick, thereby permitting the acceptance of 
a xenograft. In the NOD mouse experiment [Thomas-Vaslin et al. 1987] the graft of 
mutant thymic epithelium subtracted a Self-component from the Self of the wild-type 
mouse triggering an autoimmune attack. In the framework of the Developmental 
Time Model, these two experiments established the important role of appropriate 
ectopic thymic expression of delayed appearing peripheral Self. 

17 .5 .3 E x p e r i m e n t 3 [Adams et al 1987] 

Two transgenic murine lines were studied that express the T-antigen of the SV40 
virus in the f3-ce\\s of the pancreas. One line expresses the T-antigen early in em
bryonic life while the developmental time window is open (eTh~). The other line 
expresses the T-antigen delayed until after the window is closed (eTh"*") and the im
mune system is responsive. The early expressor treats the T-antigen as Self (NTBR) 
and there is no immune response to it. The late expressor treats the T-antigen as 
Nonself (TBR) and the response to it results in destruction of the /^-cells and dia
betes. 

If the T-antigen provokes a response when expressed delayed peripherally, it could 
not have been appropriately expressed in thymus as a negative selector of iTh or as a 
positive selector of iT-suppressors (iTsu). Given that it is not functionally expressed 
in thymus, then the unresponsive state in the early expressor cannot be due to sup
pression; it must be due to deletion of iTh anti-T-antigen in the periphery when the 
window was open (i.e., an insufficiency of eTh). Of course, it is possible to argue that 
the early expressor is functionally expressed in thymus, whereas the late expressor, in 
addition to being late, is in some way also defective in thymic expression. Although 
unlikely, this experiment is admittedly incomplete. Nevertheless, a straightforward 
interpretation of it is that the transgene is not functionally expressed in thymus 
and, therefore, a deletional mechanism of peripheral unresponsiveness exists. 

17.5 .4 E x p e r i m e n t 4 [Lafaille et al 1994] 

Two murine lines expressing as a transgene a Class II MHC-restricted TCR anti-'a-
peptide-from-myelin-basic-protein (Pmbp)' were established. One Hne referred to as 
T/R"^ expresses the endogenous TCR and BCR loci in addition to the transgenic 
TCR (T). The other line referred to as T/R~ , due to a Rag" mutation, cannot 
express the endogenous TCR and BCR loci. It only expresses the transgene (T). 
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The T/R~ Hne at 5-7 weeks after birth begins to develop EAE (experimental allergic 
encephalitis) due to an attack by eTh expressing the transgene on the myelin basic 
protein (MBP) in the central nervous system. By 40 weeks, 100% of the T/R~ mice 
have succumbed to EAE. 

The T/R"^ line expresses a much lower incidence of EAE, which reaches 14% of mice 
in 40 weeks and is initiated somewhat later, around 10-12 weeks. 

In order to discuss this experiment the role of MBP must be addressed. Given 
the existence of EAE, the MBP is in one sense obviously accessible to the immune 
system. However, because it is behind the blood-brain barrier, the effector T-helpers 
(eTh) must breach the barrier and this contributes to the delay in onset after birth 
of 5-7 weeks. 

As negative selection is not detectable, functional ectopic expression of MBP in thy
mus is unlikely. Given this, if MBP were viewed as a Self-antigen, then the induction 
of regulatory T-suppressors anti-MBP would also be ruled out. Further, deletion in 
the periphery while the window was open, is also unlikely. MBP is sequestered be
hind the blood-brain barrier and does not act normally as a deletional peripheral 
Self-component. MBP behaves as Nonself to the immune system. For this reason, 
iT- and iB-cells are present in the periphery at the same level as any other i-cell 
anti-NS. There is no response normally because MBP is not presented to the immune 
system. There are host components that are sequestered behind barriers that pre
vent interaction with the immune system (e.g., the eye, parts of the nervous system, 
the fetus and most intracellular constituents) (Table 17.3). When the developmental 
time window is open, these components do not interact with the immune system 
to negatively select (or to induce suppression) and, therefore, are indistinguishable 
from Nonself, and, if rendered available, are treated as such. 

Consequently, Self is defined by the immune system as a Not-To-Be-Ridded host 
component that was encountered when the developmental window was open and 
that persists. In short, once again. Self is prior and persistent; Nonself is posterior 
and transient. 

Now let's face several questions that have not been addressed regarding this exper
iment. 

1 - The TCR transgene is expressed by i-cells with no effector function. How does the 
induction of the iTh to eTh get started? How are the iTh anti-[Pmbp-RII] induced 
to effectors (eTh anti-[Pmbp-RII]) in T/R~(Rag~)? Here we have a clear hint of an 
antigen-independent pathway to primer eTh. 

2 - Why does it take close to 7 weeks after birth for T/R~mice to show any signs 
of EAE? 

There are several possible additive reasons: 
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Barrier 

Blood-brain 

Blood-eye 

Blood-placenta 

Blood-mammary gland 

Cell membrane 

Nonself Component 

parts of nervous system [Yan et al. 2003] 

parts of the eye [Streilein 1999, McKenna &: Kapp 2004] 

[Streilein 2003] 

fetus of placental mammals [Mellor et al. 2002] 

[Poole & Claman 2004, Koch & Piatt 2003] 

milk of the lactating mammal 

- intracellular constituents that are isolated 

from interacting with iB-cells and antibody 

- host constituents not presented as 

[P-RII] are ignored by iTh but if presented 

as [P-RII] to that individual, they would 

be responded to as Nonself 

Table 17.3. Categories of host-encoded Nonself-antigens because they are isolated 
by a barrier 

First, it takes time to reach an effective eTh primer level, but because the entire 
iTh population is anti-MBP, the primer eTh anti-MBP level would be abnormally 
high and might itself (without "autocatalytic" induction) be capable of initiating 
autoimmunity. 

Second, the blood-brain barrier must be breached [Yan et al 2003]. To do this, 
endothelial cells must express [Pmbp-RII] from MBP scavenged from necrosing glia. 
The primer eTh might be at a sufficient level to breach this barrier. 

Third, it takes time to do revealable nervous system damage once the blood-brain 
barrier is reached. 

3 - Why is EAE less frequent in T/R+ than in T / R " ? 

There are many possible reasons, among them: 

— dilution of the transgenic TCR by endogenous TCR expression. Therefore, the 
effective level of primer eTh from the transgene will be much lower. The result is a 
less effective breaching of the blood-brain barrier and EAE is initiated poorly. 

— induction of T-suppressors (iTsu) in T/R"^, not T/R~. It does not appear that 
the thymus expresses MBP in T/R~ and is unlikely to do so in T/R"^. However, if 
like all other T-cells (iTh, iTc), the iTsu leave the thymus as anti-Nonself, and if 
MBP behaves as Nonself, then the subliminal autoimmunity in T/R"^ might provide 
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a source of MBP for presentation by APC and the subsequent induction of iTsu to 
eTsu specific for MBP in the periphery. The role of eTsu anti-MBP would be to 
reduce the magnitude of the eThl response to an ineffective level and maintain it 
low. This would be an effect at the level of Decision 2, not Decision 1. 

— A switch from eThl to eTh2. I haven't discussed Decision 2 regulation but for 
completeness, eTh2 is less effective (not zero) than eThl in provoking EAE [Lafaille 
et al. 1997]. The response in T/R~ might be eThl , whereas in T/R"*" it might be 
eTh2. 

4 - Why doesn't T/R~ develop suppression? 

Under the standard assumption that T-suppressors (Tsu) are a special lineage se
lected in thymus to be anti-Self, suppression is not expected either in T/R~ or T/R"*" 
because MBP does not appear to be functionally ectopically expressed in thymus. 
The generalization from this assumption would be that there are non-thymically 
expressed peripheral Self-antigens, the response to which cannot be regulated by 
suppression. MBP treated as a "Self-antigen" would have to be viewed as an exam
ple. The transgenic line of early expressed SV40T-antigen, discussed as Experiment 
3, would also have to be viewed as another example. Consequently, I would expect 
that this popular assumption that Tsu are thymically selected to be anti-Self will 
meet demise. 

Under the theory suggested here, namely that Tsu are a special lineage positively 
selected in thymus to be anti-Nonself like all other T-cells, then MBP would be 
viewed as Nonself by the immune system. It would not be attacked because it is 
sequestered and not normally expressed as a functional [Pmbp-RII] ligand outside 
of the blood-brain barrier. 

If Tsu are sorted to be anti-NS, they cannot contribute to Decision 1, the sorting of 
the repertoire. They must function at the level of Decision 2 as a feedback mechanism 
regulating the magnitude of the effector response. 

17.5.5 Experiment 5 [Avrameas 1991] 

A normal individual is under a steady state antigenic load that engages roughly 10% 
of the total par atopic repertoire. Analyses of the specificities engaged shows that 
most of them are directed at host epitopes. This has engendered a flurry of views 
that range from a putative disproof of the Developmental Time Model, to a denial 
of a protective role of the immune system accompanied by a semantic argument as 
to the meaning of Self. Some of the debate has been productive; most of it has been 
derouting and sterile. 

During fetal development, when the time window is open, cells die by apoptosis. The 
resultant apoptotic granules that encapsulate the intracellular contents are phago-
cytosed without their contents being exposed to the newly arising i-cells. When the 
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window closes around birth and pathogens enter the system, cells die by necrosis 
releasing their intracellular contents to immune attack. The immune system treats 
as Nonself all autogenously generated host waste (e.g., necrosing or senescing cells, 
denatured or effete protein) and rids it. I have referred to this as a housekeeping 
function [Cohn 1986]. Because it is autogenously generated does not make it Self 
(NTBR) to the immune system. The biodestructive and ridding response to it is 
salutary as it would be to any Nonself-antigen (TBR). No principle of the Develop
mental Time Model is violated by this finding. It is expected. 

17.6 Concept should guide Compute r Analyses 

It is an unfortunate but obvious fact that theoretical studies in immunology have had 
little impact on the experimentalist. The field progresses by formulating mini-models 
based on inductive extrapolation from "I believe what I see," lacking as a rule, any 
consideration of a generalizing principle. As expected of a subject driven by crass 
empiricism, it is replete with dead-ends, wasteful experimentation and questionable 
assumptions. The theoretical immunologists should ask themselves, why, unlike the 
theoretical physicist, is there an absence of influence of their output on the direction 
and development of the field. 

For some 15 years now we have been writing small computer programs available on 
our website (www.cig.salk.edu) that allow analysis of the output of a conceptualized 
system. The operator can choose the values of the parameters defined by the theory 
to test their validity. For example: 

• The humoral output of a unit immune system (the B-Protecton) [Cohn & Lang-
man 1990, Cohn 1997, Langman & Cohn 1993b, Langman 2000] 

• The configuration of rearranged TCR and BCR loci (haplotype exclusion) [Lang
man & Cohn 1993b, Langman & Cohn 2002a, Langman & Cohn 1993a] 

• The cell-mediated output of a unit immune system based on the Tritope Model 
(TUNII [Mata & Cohn 2006b]). 

• The antigen-independent pathway of iTh to eTh [Bretscher 1972, Cohn et al. 
2002] 

These have been programs to analyze small segments of the immune system. They 
have been theory-dependent. 

Recently we have attempted to link the programs (Synthetic Immune system, SIS) 
so that they can deal with a larger segment of the response (SIS I) [Mata & Cohn 
2006a]. This led us to consider the ideal. 

The ideal would be a program that is theory-independent. This means that the 
program should allow the operator to state the theory and use it to find optimal 
or acceptable values of the parameters consistent with the known behavior of the 
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output of the system. A first approach to this goal is SIS II [Mata &: Cohn 2006a]. 
Unfortunately, the more one hardwires (makes theory-dependent), the simpler the 
program; the less one hardwires (makes theory-independent), the more complex and 
cumbersome the program and the less user-friendly it becomes. Nevertheless, SIS 
III with theory independence as its goal, is slowly emerging. 

At the moment, most generalizations about immune responsiveness are stymied by 
the lack of an adequate theory of the regulation of class (Decision 2). Decision 1, the 
sorting of the repertoire has a solid conceptual basis. Decision 2 is in need of a set 
of principles to guide experiment. This is where the real vacuum exists and where 
more effort should go. Here computer modeling will be precious. 

Lastly, a good theory challenges the observation with the same validity that an 
observation challenges the theory. Not all observations are what they seem to be. 
Reinterpreting them is an important function of theory. Similarly and conversely, as 
theoreticians, we must be prepared to change our minds. In fact we should lead the 
way. 
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A List of Abbreviations 

ARA associative recognition of antigen 

APC antigen presenting cell 

iTh initial state T-helper cell 

aTh anticipatory T-helper cell 

eTh effector T-helper cell 

S Self 

NS Nonself 

NTBR not-to-be-ridded 

TBR to-be-ridded 

MHC major histocompatibility complex 

RI class I restricting element 

RII class II restricting element 

iTsu initial state T-suppressor cell 

eTsu effector T-suppressor cell 

MBP myelin basic protein 

EAE experimental allergic encephalitis 

TCR T-cell antigen-receptor 

BCR B-cell antigen-receptor 
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